Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros

Base de dados
Tipo de documento
Assunto da revista
País de afiliação
Intervalo de ano de publicação
1.
Nature ; 494(7435): 111-5, 2013 Feb 07.
Artigo em Inglês | MEDLINE | ID: mdl-23389544

RESUMO

Insulin resistance represents a hallmark during the development of type 2 diabetes mellitus and in the pathogenesis of obesity-associated disturbances of glucose and lipid metabolism. MicroRNA (miRNA)-dependent post-transcriptional gene silencing has been recognized recently to control gene expression in disease development and progression, including that of insulin-resistant type 2 diabetes. The deregulation of miRNAs miR-143 (ref. 4), miR-181 (ref. 5), and miR-103 and miR-107 (ref. 6) alters hepatic insulin sensitivity. Here we report that the expression of miR-802 is increased in the liver of two obese mouse models and obese human subjects. Inducible transgenic overexpression of miR-802 in mice causes impaired glucose tolerance and attenuates insulin sensitivity, whereas reduction of miR-802 expression improves glucose tolerance and insulin action. We identify Hnf1b (also known as Tcf2) as a target of miR-802-dependent silencing, and show that short hairpin RNA (shRNA)-mediated reduction of Hnf1b in liver causes glucose intolerance, impairs insulin signalling and promotes hepatic gluconeogenesis. In turn, hepatic overexpression of Hnf1b improves insulin sensitivity in Lepr(db/db) mice. Thus, this study defines a critical role for deregulated expression of miR-802 in the development of obesity-associated impairment of glucose metabolism through targeting of Hnf1b, and assigns Hnf1b an unexpected role in the control of hepatic insulin sensitivity.


Assuntos
Inativação Gênica , Glucose/metabolismo , Fator 1-beta Nuclear de Hepatócito/deficiência , MicroRNAs/genética , Obesidade/genética , Animais , Regulação da Expressão Gênica , Gluconeogênese , Glucose/biossíntese , Intolerância à Glucose/genética , Intolerância à Glucose/metabolismo , Fator 1-beta Nuclear de Hepatócito/genética , Fator 1-beta Nuclear de Hepatócito/metabolismo , Humanos , Insulina/metabolismo , Resistência à Insulina/genética , Fígado/metabolismo , Camundongos , MicroRNAs/biossíntese , Transdução de Sinais
2.
Nat Cell Biol ; 18(3): 328-36, 2016 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-26900752

RESUMO

Activation of brown adipose tissue (BAT) controls energy homeostasis in rodents and humans and has emerged as an innovative strategy for the treatment of obesity and type 2 diabetes mellitus. Here we show that ageing- and obesity-associated dysfunction of brown fat coincides with global microRNA downregulation due to reduced expression of the microRNA-processing node Dicer1. Consequently, heterozygosity of Dicer1 in BAT aggravated diet-induced-obesity (DIO)-evoked deterioration of glucose metabolism. Analyses of differential microRNA expression during preadipocyte commitment and mouse models of progeria, longevity and DIO identified miR-328 as a regulator of BAT differentiation. Reducing miR-328 blocked preadipocyte commitment, whereas miR-328 overexpression instigated BAT differentiation and impaired muscle progenitor commitment-partly through silencing of the ß-secretase Bace1. Loss of Bace1 enhanced brown preadipocyte specification in vitro and was overexpressed in BAT of obese and progeroid mice. In vivo Bace1 inhibition delayed DIO-induced weight gain and improved glucose tolerance and insulin sensitivity. These experiments reveal Dicer1-miR-328-Bace1 signalling as a determinant of BAT function, and highlight the potential of Bace1 inhibition as a therapeutic approach to improve not only neurodegenerative diseases but also ageing- and obesity-associated impairments of BAT function.


Assuntos
Tecido Adiposo Marrom/metabolismo , Secretases da Proteína Precursora do Amiloide/genética , Ácido Aspártico Endopeptidases/genética , Diferenciação Celular/fisiologia , RNA Helicases DEAD-box/genética , MicroRNAs/genética , Ribonuclease III/genética , Secretases da Proteína Precursora do Amiloide/metabolismo , Animais , Ácido Aspártico Endopeptidases/metabolismo , RNA Helicases DEAD-box/metabolismo , Metabolismo Energético/fisiologia , Homeostase/fisiologia , Resistência à Insulina/fisiologia , Camundongos Endogâmicos C57BL , MicroRNAs/metabolismo , Obesidade/genética , Obesidade/metabolismo , Ribonuclease III/metabolismo
3.
Mol Biol Cell ; 22(5): 541-54, 2011 Mar 01.
Artigo em Inglês | MEDLINE | ID: mdl-21209324

RESUMO

Proteins in a natural environment are constantly challenged by stress conditions, causing their destabilization, unfolding, and, ultimately, aggregation. Protein aggregation has been associated with a wide variety of pathological conditions, especially neurodegenerative disorders, stressing the importance of adequate cellular protein quality control measures to counteract aggregate formation. To secure protein homeostasis, mitochondria contain an elaborate protein quality control system, consisting of chaperones and ATP-dependent proteases. To determine the effects of protein aggregation on the functional integrity of mitochondria, we set out to identify aggregation-prone endogenous mitochondrial proteins. We could show that major metabolic pathways in mitochondria were affected by the aggregation of key enzyme components, which were largely inactivated after heat stress. Furthermore, treatment with elevated levels of reactive oxygen species strongly influenced the aggregation behavior, in particular in combination with elevated temperatures. Using specific chaperone mutant strains, we showed a protective effect of the mitochondrial Hsp70 and Hsp60 chaperone systems. Moreover, accumulation of aggregated polypeptides was strongly decreased by the AAA-protease Pim1/LON. We therefore propose that the proteolytic breakdown of aggregation-prone polypeptides represents a major protective strategy to prevent the in vivo formation of aggregates in mitochondria.


Assuntos
Proteases Dependentes de ATP/metabolismo , Mitocôndrias/enzimologia , Proteínas Mitocondriais/metabolismo , Chaperonas Moleculares/metabolismo , Estrutura Quaternária de Proteína , Proteínas de Saccharomyces cerevisiae/metabolismo , Serina Endopeptidases/metabolismo , Estresse Fisiológico , Chaperonina 60/metabolismo , Ativação Enzimática , Proteínas de Choque Térmico HSP70/metabolismo , Resposta ao Choque Térmico , Cinética , Estresse Oxidativo , Espécies Reativas de Oxigênio/metabolismo , Saccharomyces cerevisiae/enzimologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA