Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Mais filtros

Base de dados
Tipo de documento
Assunto da revista
País de afiliação
Intervalo de ano de publicação
1.
Bioconjug Chem ; 25(2): 351-61, 2014 Feb 19.
Artigo em Inglês | MEDLINE | ID: mdl-24437342

RESUMO

Antibody-drug conjugates (ADCs) are a targeted chemotherapeutic currently at the cutting edge of oncology medicine. These hybrid molecules consist of a tumor antigen-specific antibody coupled to a chemotherapeutic small molecule. Through targeted delivery of potent cytotoxins, ADCs exhibit improved therapeutic index and enhanced efficacy relative to traditional chemotherapies and monoclonal antibody therapies. The currently FDA-approved ADCs, Kadcyla (Immunogen/Roche) and Adcetris (Seattle Genetics), are produced by conjugation to surface-exposed lysines, or partial disulfide reduction and conjugation to free cysteines, respectively. These stochastic modes of conjugation lead to heterogeneous drug products with varied numbers of drugs conjugated across several possible sites. As a consequence, the field has limited understanding of the relationships between the site and extent of drug loading and ADC attributes such as efficacy, safety, pharmacokinetics, and immunogenicity. A robust platform for rapid production of ADCs with defined and uniform sites of drug conjugation would enable such studies. We have established a cell-free protein expression system for production of antibody drug conjugates through site-specific incorporation of the optimized non-natural amino acid, para-azidomethyl-l-phenylalanine (pAMF). By using our cell-free protein synthesis platform to directly screen a library of aaRS variants, we have discovered a novel variant of the Methanococcus jannaschii tyrosyl tRNA synthetase (TyrRS), with a high activity and specificity toward pAMF. We demonstrate that site-specific incorporation of pAMF facilitates near complete conjugation of a DBCO-PEG-monomethyl auristatin (DBCO-PEG-MMAF) drug to the tumor-specific, Her2-binding IgG Trastuzumab using strain-promoted azide-alkyne cycloaddition (SPAAC) copper-free click chemistry. The resultant ADCs proved highly potent in in vitro cell cytotoxicity assays.


Assuntos
Aminoácidos/química , Imunoconjugados/química , Linhagem Celular , Sistema Livre de Células , Cromatografia Líquida , Ensaios de Triagem em Larga Escala , Humanos , Imunoconjugados/farmacologia , Espectrometria de Massas em Tandem
2.
PLoS Pathog ; 2(12): e132, 2006 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-17173481

RESUMO

Viral replication requires energy and macromolecular precursors derived from the metabolic network of the host cell. Despite this reliance, the effect of viral infection on host cell metabolic composition remains poorly understood. Here we applied liquid chromatography-tandem mass spectrometry to measure the levels of 63 different intracellular metabolites at multiple times after human cytomegalovirus (HCMV) infection of human fibroblasts. Parallel microarray analysis provided complementary data on transcriptional regulation of metabolic pathways. As the infection progressed, the levels of metabolites involved in glycolysis, the citric acid cycle, and pyrimidine nucleotide biosynthesis markedly increased. HCMV-induced transcriptional upregulation of specific glycolytic and citric acid cycle enzymes mirrored the increases in metabolite levels. The peak levels of numerous metabolites during infection far exceeded those observed during normal fibroblast growth or quiescence, demonstrating that HCMV markedly disrupts cellular metabolic homeostasis and institutes its own specific metabolic program.


Assuntos
Infecções por Citomegalovirus/metabolismo , Citomegalovirus/patogenicidade , Fibroblastos/metabolismo , Fibroblastos/virologia , Células Cultivadas , Cromatografia Líquida , Ciclo do Ácido Cítrico/fisiologia , Citomegalovirus/fisiologia , Infecções por Citomegalovirus/patologia , Fibroblastos/patologia , Glicólise/fisiologia , Homeostase/fisiologia , Humanos , Masculino , Nucleotídeos de Pirimidina/biossíntese , Espectrometria de Massas em Tandem , Replicação Viral/fisiologia
3.
Toxicology ; 222(1-2): 25-36, 2006 May 01.
Artigo em Inglês | MEDLINE | ID: mdl-16473451

RESUMO

Sulfamethoxazole (SMX) is an effective drug for the management of opportunistic infections, but its use is limited by hypersensitivity reactions, particularly in HIV-infected patients. The oxidative metabolite SMX-nitroso (SMX-NO), is thought to be a proximate mediator of SMX hypersensitivity, and can be reduced in vitro by ascorbate or glutathione. Leukocytes from patients with SMX hypersensitivity show enhanced cytotoxicity from SMX metabolites in vitro; this finding has been attributed to a possible "detoxification defect" in some individuals. The purpose of this study was to determine whether variability in endogenous ascorbate or glutathione could be associated with individual differences in SMX-NO cytotoxicity. Thirty HIV-positive patients and 23 healthy control subjects were studied. Both antioxidants were significantly correlated with the reduction of SMX-NO to its hydroxylamine, SMX-HA, by mononuclear leukocytes, and both were linearly depleted during reduction. Controlled ascorbate supplementation in three healthy subjects increased leukocyte ascorbate with no change in glutathione, and significantly enhanced SMX-NO reduction. Ascorbate supplementation also decreased SMX-NO cytotoxicity compared to pre-supplementation values. Rapid reduction of SMX-NO to SMX-HA was associated with enhanced direct cytotoxicity from SMX-NO. When forward oxidation of SMX-HA back to SMX-NO was driven by the superoxide dismutase mimetic, Tempol, SMX-NO cytotoxicity was increased, without enhancement of adduct formation. This suggests that SMX-NO cytotoxicity may be mediated, at least in part, by redox cycling between SMX-HA and SMX-NO. Overall, these data indicate that endogenous ascorbate and glutathione are important for the intracellular reduction of SMX-NO, a proposed mediator of SMX hypersensitivity, and that redox cycling of SMX-HA to SMX-NO may contribute to the cytotoxicity of these metabolites in vitro.


Assuntos
Ácido Ascórbico/metabolismo , Glutationa/metabolismo , Infecções por HIV/metabolismo , Leucócitos Mononucleares/metabolismo , Sulfametoxazol/análogos & derivados , Adulto , Idoso , Antioxidantes/farmacologia , Ácido Ascórbico/administração & dosagem , Ácido Ascórbico/análise , Separação Celular , Óxidos N-Cíclicos/farmacologia , Hipersensibilidade a Drogas/etiologia , Feminino , Glutationa/análise , Infecções por HIV/sangue , Humanos , Leucócitos Mononucleares/efeitos dos fármacos , Masculino , Pessoa de Meia-Idade , Oxirredução , Marcadores de Spin , Sulfametoxazol/análise , Sulfametoxazol/química , Sulfametoxazol/metabolismo , Sulfametoxazol/toxicidade
4.
J Chromatogr A ; 1125(1): 76-88, 2006 Aug 25.
Artigo em Inglês | MEDLINE | ID: mdl-16759663

RESUMO

A key unmet need in metabolomics is the ability to efficiently quantify a large number of known cellular metabolites. Here we present a liquid chromatography (LC)-electrospray ionization tandem mass spectrometry (ESI-MS/MS) method for reliable measurement of 141 metabolites, including components of central carbon, amino acid, and nucleotide metabolism. The selected LC approach, hydrophilic interaction chromatography with an amino column, effectively separates highly water soluble metabolites that fail to retain using standard reversed-phase chromatography. MS/MS detection is achieved by scanning through numerous selected reaction monitoring events on a triple quadrupole instrument. When applied to extracts of Escherichia coli grown in [12C]- versus [13C]glucose, the method reveals appropriate 12C- and 13C-peaks for 79 different metabolites.


Assuntos
Cromatografia Líquida/métodos , Espectrometria de Massas por Ionização por Electrospray/métodos , Água/química , Aminoácidos/análise , Carboidratos/análise , Coenzima A/análise , Escherichia coli/química , Escherichia coli/citologia , Escherichia coli/metabolismo , Nucleosídeos/análise , Nucleotídeos/análise , Reprodutibilidade dos Testes , Solubilidade
5.
Curr Protoc Toxicol ; Chapter 4: Unit4.16, 2005.
Artigo em Inglês | MEDLINE | ID: mdl-23045123

RESUMO

NADH cytochrome b(5) reductase (b(5)R; EC 1.6.2.2; Diaphorase I; NADH: ferricytochrome b(5) oxidoreductase) is an FAD-containing protein, which, along with the hemoprotein cytochrome b(5) (cyt b(5)), mediates electron transfer from NADH to fatty acid desaturases, P450 oxidases, methemoglobin, and ascorbyl free radical. In addition, b(5)R and cyt b(5) can directly catalyze the reduction of hydroxylamine and amidoxime metabolites. This unit provides protocols for measuring the activity and mRNA expression of the cytochrome b(5)/cytochrome b(5) reductase pathway, and for obtaining heterologous expression and purification of the soluble forms of each protein.


Assuntos
Citocromos b5/metabolismo , Sequência de Bases , Células Cultivadas , Primers do DNA , Humanos , Metemoglobina/metabolismo , Reação em Cadeia da Polimerase
6.
J Pharmacol Exp Ther ; 311(3): 1171-8, 2004 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-15302896

RESUMO

Hydroxylamine metabolites, implicated in dose-dependent and idiosyncratic toxicity from arylamine drugs, and amidoximes, used as pro-drugs, are metabolized by an as yet incompletely characterized NADH-dependent microsomal reductase system. We hypothesized that NADH cytochrome b5 reductase and cytochrome b5 were responsible for this enzymatic activity in humans. Purified human soluble NADH cytochrome b5 reductase and cytochrome b5, expressed in Escherichia coli, efficiently catalyzed the reduction of sulfamethoxazole hydroxylamine, dapsone hydroxylamine, and benzamidoxime, with apparent Km values similar to those found in human liver microsomes and specific activities (Vmax) 74 to 235 times higher than in microsomes. Minimal activity was seen with either protein alone, and microsomal protein did not enhance activity other than additively. All three reduction activities were significantly correlated with immunoreactivity for cytochrome b5 in individual human liver microsomes. In addition, polyclonal antibodies to both NADH cytochrome b5 reductase and cytochrome b5 significantly inhibited reduction activity for sulfamethoxazole hydroxylamine. Finally, fibroblasts from a patient with type II hereditary methemoglobinemia (deficient in NADH cytochrome b5 reductase) showed virtually no activity for hydroxylamine reduction, compared with normal fibroblasts. These results indicate a novel direct role for NADH cytochrome b5 reductase and cytochrome b5 in xenobiotic metabolism and suggest that pharmacogenetic variability in either of these proteins may effect drug reduction capacity.


Assuntos
Citocromo-B(5) Redutase/metabolismo , Citocromos b5/metabolismo , Hidroxilaminas/metabolismo , Microssomos Hepáticos/metabolismo , Oximas/metabolismo , Xenobióticos/metabolismo , Amidas/metabolismo , Anticorpos Bloqueadores/farmacologia , Citocromo-B(5) Redutase/antagonistas & inibidores , Citocromo-B(5) Redutase/biossíntese , Citocromos b5/antagonistas & inibidores , Citocromos b5/biossíntese , DNA Complementar/biossíntese , DNA Complementar/genética , Fibroblastos/metabolismo , Humanos , Imuno-Histoquímica , Cinética , Oxirredução
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA