Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
1.
Genet Sel Evol ; 55(1): 30, 2023 May 04.
Artigo em Inglês | MEDLINE | ID: mdl-37143017

RESUMO

BACKGROUND: Viral nervous necrosis (VNN) is a major disease that affects European sea bass, and understanding the biological mechanisms that underlie VNN resistance is important for the welfare of farmed fish and sustainability of production systems. The aim of this study was to identify genomic regions and genes that are associated with VNN resistance in sea bass. RESULTS: We generated a dataset of 838,451 single nucleotide polymorphisms (SNPs) identified from whole-genome sequencing (WGS) in the parental generation of two commercial populations (A: 2371 individuals and B: 3428 individuals) of European sea bass with phenotypic records for binary survival in a VNN challenge. For each population, three cohorts were submitted to a red-spotted grouper nervous necrosis virus (RGNNV) challenge by immersion and genotyped on a 57K SNP chip. After imputation of WGS SNPs from their parents, quantitative trait loci (QTL) were mapped using a Bayesian sparse linear mixed model (BSLMM). We found several QTL regions that were specific to one of the populations on different linkage groups (LG), and one 127-kb QTL region on LG12 that was shared by both populations and included the genes ZDHHC14, which encodes a palmitoyltransferase, and IFI6/IFI27-like, which encodes an interferon-alpha induced protein. The most significant SNP in this QTL region was only 1.9 kb downstream of the coding sequence of the IFI6/IFI27-like gene. An unrelated population of four large families was used to validate the effect of the QTL. Survival rates of susceptible genotypes were 40.6% and 45.4% in populations A and B, respectively, while that of the resistant genotype was 66.2% in population B and 78% in population A. CONCLUSIONS: We have identified a genomic region that carries a major QTL for resistance to VNN and includes the ZDHHC14 and IFI6/IFI27-like genes. The potential involvement of the interferon pathway, a well-known anti-viral defense mechanism in several organisms (chicken, human, or fish), in survival to VNN infection is of particular interest. Our results can lead to major improvements for sea bass breeding programs through marker-assisted genomic selection to obtain more resistant fish.


Assuntos
Bass , Doenças dos Peixes , Animais , Humanos , Bass/genética , Interferons/genética , Teorema de Bayes , Locos de Características Quantitativas , Necrose/genética , Doenças dos Peixes/genética , Proteínas Mitocondriais/genética , Proteínas de Membrana/genética
2.
Animals (Basel) ; 13(14)2023 Jul 11.
Artigo em Inglês | MEDLINE | ID: mdl-37508043

RESUMO

Functional ingredients have profiled as suitable candidates for reinforcing the fish antioxidant response and stress tolerance. In addition, selective breeding strategies have also demonstrated a correlation between fish growth performance and susceptibility to stressful culture conditions as a key component in species domestication processes. The aim of the present study is to evaluate the ability of a selected high-growth genotype of 300 days post-hatch European sea bass (Dicentrarchus labrax) juveniles to use different functional additives as endogenous antioxidant capacity and stress resistance boosters when supplemented in low fish meal (FM) and fish oil (FO) diets. Three isoenergetic and isonitrogenous diets (10% FM/6% FO) were supplemented with 200 ppm of a blend of garlic and Labiatae plant oils (PHYTO0.02), 1000 ppm of a mixture of citrus flavonoids and Asteraceae and Labiatae plant essential oils (PHYTO0.1) or 5000 ppm of galactomannan-oligosaccharides (GMOS0.5). A reference diet was void of supplementation. The fish were fed the experimental diets for 72 days and subjected to a H2O2 exposure oxidative stress challenge. The fish stress response was evaluated through measuring the circulating plasma cortisol levels and the fish gill antioxidant response by the relative gene expression analysis of nfΚß2, il-1b, hif-1a, nd5, cyb, cox, sod, cat, gpx, tnf-1α and caspase 9. After the oxidative stress challenge, the genotype origin determined the capacity of the recovery of basal cortisol levels after an acute stress response, presenting GS fish with a better pattern of recovery. All functional diets induced a significant upregulation of cat gill gene expression levels compared to fish fed the control diet, regardless of the fish genotype. Altogether, suggesting an increased capacity of the growth selected European sea bass genotype to cope with the potential negative side-effects associated to an H2O2 bath exposure.

3.
Mar Biotechnol (NY) ; 25(5): 749-762, 2023 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-37581865

RESUMO

MicroRNAs (miRNAs) constitute a new category of biomarkers. Studies on miRNAs in non-mammalian species have drastically increased in the last few years. Here, we explored the use of miRNAs as potential, poorly invasive markers, to identify sex and characterize acute stress in fish. The European seabass (Dicentrarchus labrax) was chosen as a model because of its rapid response to stress and its specific sex determination system, devoid of sexual chromosomes. We performed a small RNA-sequencing analysis in the blood plasma of male and female European seabass (mature and immature) as well as in the blood plasma of juveniles submitted to an acute stress and sampled throughout the recovery period (at 0 h, 0.5 h, 1.5 h and 6 h). In immature individuals, both miR-1388-3p and miR-7132a-5p were up-regulated in females, while miR-499a-5p was more abundant in males. However, no miRNAs were found to be differentially expressed between sexes in the blood plasma of mature individuals. For the acute stress analysis, five miRNAs (miR-155-5p, miR-200a-3p, miR-205-1-5p, miR-143-3p, and miR-223-3p) followed cortisol production over time. All miRNAs identified were tested and validated by RT-qPCR on sequenced samples. A complementary analysis on the 3'UTR sequences of the European seabass allowed to predict potential mRNA targets, some of them being particularly relevant regarding stress regulation, e.g., the glucocorticoid receptor 1 and the mineralocorticoid receptor. The present study provides new avenues and recommendations on the use of miRNAs as biomarkers of sex or stress of the European seabass, with potential application on other fish species.


Assuntos
Bass , MicroRNA Circulante , MicroRNAs , Animais , Masculino , Feminino , Bass/genética , MicroRNAs/genética , Biomarcadores , Sequência de Bases
4.
Front Immunol ; 10: 3162, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-32117214

RESUMO

Vibrio anguillarum causes high mortality in European sea bass (Dicentrarchus labrax) larviculture and is a hindering factor for successful sustainable aquaculture of this commercially valuable species. Priming of the innate immune system through administration of immunostimulants has become an important approach to control disease outbreaks in marine fish larviculture. This study was conducted to evaluate immunostimulation by Escherichia coli HSP70 (DnaK) in axenic European sea bass larvae in order to protect the larvae against vibriosis. DnaK stimulates the immune response in crustaceans and juvenile fish against bacterial infections. The use of axenic fish larvae allows to study immunostimulation in the absence of an interfering microbial community. At 7 days post-hatching, larvae received a single dose of alginate encapsulated recombinant DnaK. Two non-treated control groups in which animals either received empty alginate microparticles (C1) or no alginante microparticles (C2 and C3) were included in the study. Eighteen hours later, all larvae, except the ones from group C3 (non-infected control) were challenged with V. anguillarum (105 CFU, bath infection). Mortality was daily recorded until 120 h post infection and at 18, 24, and 36 h post infection, larvae were sampled for expression of immune related genes. Results showed that V. anguillarum induced an immune response in axenic sea bass larvae but that the innate immune response was incapable to protect the larvae against deadly septicaemic disease. In addition, we showed that administration of alginate encapsulated DnaK to axenic European sea bass larvae at DAH7 resulted in a significant, DnaK dose dependent, upreglation of immune sensor, regulatory and effector genes. Significant upregulation of cxcr4, cas1 and especially of hep and dic was correlated with significant higher survival rates in V. anguillarum infected larvae. In the future recombinant DnaK might perhaps be used as a novel immunostimulant in sea bass larviculture.


Assuntos
Bass/microbiologia , Proteínas de Escherichia coli/farmacologia , Doenças dos Peixes/prevenção & controle , Proteínas de Choque Térmico HSP70/farmacologia , Fatores Imunológicos/farmacologia , Vibrioses/veterinária , Animais , Bass/imunologia , Doenças dos Peixes/imunologia , Larva/efeitos dos fármacos , Proteínas Recombinantes/farmacologia
5.
Vet Immunol Immunopathol ; 204: 19-27, 2018 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-30596377

RESUMO

Vibrio anguillarum causes high mortality in European sea bass (Dicentrarchus labrax) larviculture. In this study, we evaluated if the recombinant sea bass ferritin-H could stimulate the innate immune system of gnotobiotic European sea bass larvae resulting in protection against a V. anguillarum challenge. We also evaluated the effect of a V. anguillarum infection on the transcription of immune-related genes in gnotobiotic European sea bass larvae. Recombinant sea bass ferritin-H was produced, encapsulated in calcium alginate microparticles and orally delivered to sea bass larvae at seven days after hatching. Our results showed V. anguillarum caused an acute infection, resulting in high mortality. The infection significantly upregulated the expression of tlr3, tlr5, cas1, il1ß, tnfα, mif, il10, cc1, cxcl8 at 18, 24 and 36 h post infection, but not of the chemokine receptor genes cxcr4 and ccr9. There was no protective effect of ferritin-H. Remarkably, ferritin-H caused significantly higher transcript levels for cxcr4 and ccr9. Sea bass ferritin-H was more likely involved in immune-suppression and results point in the direction of a negative regulation of CXCR4 resulting in inhibition of cell proliferation, differentiation and migration which is detrimental to innate immunity and might explain the non-protective effect of ferritin-H in fish larvae.


Assuntos
Apoferritinas/farmacologia , Bass/microbiologia , Doenças dos Peixes/microbiologia , Imunidade Inata/efeitos dos fármacos , Vibrioses/veterinária , Vibrio/imunologia , Animais , Bass/imunologia , Doenças dos Peixes/imunologia , Doenças dos Peixes/prevenção & controle , Larva/microbiologia , Proteínas Recombinantes , Vibrioses/imunologia , Vibrioses/prevenção & controle
6.
Mar Biotechnol (NY) ; 19(4): 391-400, 2017 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-28643227

RESUMO

Aquaculture is the fastest growing animal production sector. However, the production of marine fish is still hampered by the high mortality rate in the first few weeks after hatching. Mortality in larvae is often caused by microbial infections. Today, the incorporation of immunostimulants into microparticles provides us new tools to enhance disease resistance in marine larviculture. In this study, we prepared alginate microparticles loaded with the model antigen fluorescein isothiocyanate conjugated-bovine serum albumin. Optimum concentrations of alginate and CaCl2, the correct alginate viscosity and the appropriate preparatory conditions led to the creation of desirable microparticles with the correct size for oral feeding in gnotobiotic European sea bass larvae. The prepared alginate microparticles were stable in sea water and were successfully ingested by gnotobiotic sea bass larvae at day after hatching 7 without causing any negative effects. Results suggest the suitability of this drug delivery system for targeting the innate immune system of fish larvae in order to enhance disease resistance and thus reduce mortality in larviculture.


Assuntos
Bass/fisiologia , Fluoresceína-5-Isotiocianato/análogos & derivados , Soroalbumina Bovina/administração & dosagem , Administração Oral , Ração Animal/análise , Animais , Aquicultura , Bass/crescimento & desenvolvimento , Cloreto de Cálcio/administração & dosagem , Sistemas de Liberação de Medicamentos , Doenças dos Peixes/prevenção & controle , Fluoresceína-5-Isotiocianato/administração & dosagem , Vida Livre de Germes , Larva/crescimento & desenvolvimento , Larva/fisiologia , Tamanho da Partícula , Água do Mar
7.
PLoS One ; 9(10): e109280, 2014.
Artigo em Inglês | MEDLINE | ID: mdl-25275508

RESUMO

Impact assessments of offshore wind farm installations and operations on the marine fauna are performed in many countries. Yet, only limited quantitative data on the physiological impact of impulsive sounds on (juvenile) fishes during pile driving of offshore wind farm foundations are available. Our current knowledge on fish injury and mortality due to pile driving is mainly based on laboratory experiments, in which high-intensity pile driving sounds are generated inside acoustic chambers. To validate these lab results, an in situ field experiment was carried out on board of a pile driving vessel. Juvenile European sea bass (Dicentrarchus labrax) of 68 and 115 days post hatching were exposed to pile-driving sounds as close as 45 m from the actual pile driving activity. Fish were exposed to strikes with a sound exposure level between 181 and 188 dB re 1 µPa².s. The number of strikes ranged from 1739 to 3067, resulting in a cumulative sound exposure level between 215 and 222 dB re 1 µPa².s. Control treatments consisted of fish not exposed to pile driving sounds. No differences in immediate mortality were found between exposed and control fish groups. Also no differences were noted in the delayed mortality up to 14 days after exposure between both groups. Our in situ experiments largely confirm the mortality results of the lab experiments found in other studies.


Assuntos
Bass/fisiologia , Estimulação Acústica/efeitos adversos , Animais , Bass/crescimento & desenvolvimento , Ruído/efeitos adversos , Som/efeitos adversos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA