Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros

Base de dados
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
Nat Commun ; 14(1): 7887, 2023 Nov 30.
Artigo em Inglês | MEDLINE | ID: mdl-38036552

RESUMO

Electrical stimulation of the neuromuscular system holds promise for both scientific and therapeutic biomedical applications. Supplying and maintaining the power necessary to drive stimulation chronically is a fundamental challenge in these applications, especially when high voltages or currents are required. Wireless systems, in which energy is supplied through near field power transfer, could eliminate complications caused by battery packs or external connections, but currently do not provide the harvested power and voltages required for applications such as muscle stimulation. Here, we introduce a passive resonator optimized power transfer design that overcomes these limitations, enabling voltage compliances of ± 20 V and power over 300 mW at device volumes of 0.2 cm2, thereby improving power transfer 500% over previous systems. We show that this improved performance enables multichannel, biphasic, current-controlled operation at clinically relevant voltage and current ranges with digital control and telemetry in freely behaving animals. Preliminary chronic results indicate that implanted devices remain operational over 6 weeks in both intact and spinal cord injured rats and are capable of producing fine control of spinal and muscle stimulation.


Assuntos
Fontes de Energia Elétrica , Próteses e Implantes , Ratos , Animais , Medula Espinal , Estimulação Elétrica/métodos , Telemetria/métodos , Tecnologia sem Fio , Eletrodos Implantados
2.
Sci Adv ; 8(43): eabq7469, 2022 Oct 28.
Artigo em Inglês | MEDLINE | ID: mdl-36288311

RESUMO

Monitoring and control of cardiac function are critical for investigation of cardiovascular pathophysiology and developing life-saving therapies. However, chronic stimulation of the heart in freely moving small animal subjects, which offer a variety of genotypes and phenotypes, is currently difficult. Specifically, real-time control of cardiac function with high spatial and temporal resolution is currently not possible. Here, we introduce a wireless battery-free device with on-board computation for real-time cardiac control with multisite stimulation enabling optogenetic modulation of the entire rodent heart. Seamless integration of the biointerface with the heart is enabled by machine learning-guided design of ultrathin arrays. Long-term pacing, recording, and on-board computation are demonstrated in freely moving animals. This device class enables new heart failure models and offers a platform to test real-time therapeutic paradigms over chronic time scales by providing means to control cardiac function continuously over the lifetime of the subject.

3.
Nat Commun ; 12(1): 6707, 2021 11 18.
Artigo em Inglês | MEDLINE | ID: mdl-34795247

RESUMO

Bioelectronic interfaces have been extensively investigated in recent years and advances in technology derived from these tools, such as soft and ultrathin sensors, now offer the opportunity to interface with parts of the body that were largely unexplored due to the lack of suitable tools. The musculoskeletal system is an understudied area where these new technologies can result in advanced capabilities. Bones as a sensor and stimulation location offer tremendous advantages for chronic biointerfaces because devices can be permanently bonded and provide stable optical, electromagnetic, and mechanical impedance over the course of years. Here we introduce a new class of wireless battery-free devices, named osseosurface electronics, which feature soft mechanics, ultra-thin form factor and miniaturized multimodal biointerfaces comprised of sensors and optoelectronics directly adhered to the surface of the bone. Potential of this fully implanted device class is demonstrated via real-time recording of bone strain, millikelvin resolution thermography and delivery of optical stimulation in freely-moving small animal models. Battery-free device architecture, direct growth to the bone via surface engineered calcium phosphate ceramic particles, demonstration of operation in deep tissue in large animal models and readout with a smartphone highlight suitable characteristics for exploratory research and utility as a diagnostic and therapeutic platform.


Assuntos
Fontes de Energia Elétrica , Fenômenos Eletromagnéticos , Eletrônica/instrumentação , Fenômenos Fisiológicos Musculoesqueléticos , Termografia/instrumentação , Tecnologia sem Fio/instrumentação , Animais , Eletrônica/métodos , Masculino , Microscopia Eletrônica de Varredura , Sistema Musculoesquelético/anatomia & histologia , Sistema Musculoesquelético/ultraestrutura , Redes Neurais de Computação , Ratos Sprague-Dawley , Estresse Mecânico , Termografia/métodos , Microtomografia por Raio-X/métodos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA