Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
1.
Mol Cell ; 78(2): 346-358.e9, 2020 04 16.
Artigo em Inglês | MEDLINE | ID: mdl-32268123

RESUMO

CAG-repeat expansions in at least eight different genes cause neurodegeneration. The length of the extended polyglutamine stretches in the corresponding proteins is proportionally related to their aggregation propensity. Although these proteins are ubiquitously expressed, they predominantly cause toxicity to neurons. To understand this neuronal hypersensitivity, we generated induced pluripotent stem cell (iPSC) lines of spinocerebellar ataxia type 3 and Huntington's disease patients. iPSC generation and neuronal differentiation are unaffected by polyglutamine proteins and show no spontaneous aggregate formation. However, upon glutamate treatment, aggregates form in neurons but not in patient-derived neural progenitors. During differentiation, the chaperone network is drastically rewired, including loss of expression of the anti-amyloidogenic chaperone DNAJB6. Upregulation of DNAJB6 in neurons antagonizes glutamate-induced aggregation, while knockdown of DNAJB6 in progenitors results in spontaneous polyglutamine aggregation. Loss of DNAJB6 expression upon differentiation is confirmed in vivo, explaining why stem cells are intrinsically protected against amyloidogenesis and protein aggregates are dominantly present in neurons.


Assuntos
Proteínas Amiloidogênicas/genética , Diferenciação Celular/genética , Proteínas de Choque Térmico HSP40/genética , Chaperonas Moleculares/genética , Proteínas do Tecido Nervoso/genética , Células-Tronco Neurais/metabolismo , Regulação da Expressão Gênica/genética , Técnicas de Inativação de Genes , Ácido Glutâmico/metabolismo , Humanos , Doença de Huntington/genética , Doença de Huntington/metabolismo , Doença de Huntington/patologia , Células-Tronco Pluripotentes Induzidas/metabolismo , Células-Tronco Pluripotentes Induzidas/patologia , Doença de Machado-Joseph/genética , Doença de Machado-Joseph/metabolismo , Doença de Machado-Joseph/patologia , Células-Tronco Neurais/patologia , Neurônios/metabolismo , Neurônios/patologia , Agregados Proteicos/genética , Expansão das Repetições de Trinucleotídeos/genética
2.
J Neurosci ; 29(19): 6353-7, 2009 May 13.
Artigo em Inglês | MEDLINE | ID: mdl-19439612

RESUMO

Strong unilateral contractions are accompanied by excitatory effects to the ipsilateral cortex. This activity can even result in overt contractions of muscles in the contralateral limb. We used this inadvertent, associated activity to study whether the cortical presentation of movements is organized in a directional-related or a muscle-related reference frame. We assessed the contralateral activation for the left index finger during a sustained maximal abduction of the right index finger. In the first experiment, both hands were held vertically in a symmetrical orientation, and in the second experiment the hands were in an asymmetrical orientation (left hand, palm downward; right hand, vertical). In both experiments, the direction of the contralateral associated contraction was upward, i.e., in the symmetrical hand orientation the contralateral force increased mainly in abduction direction, whereas in the asymmetrical hand orientation the contralateral force increased in the extension direction. Thus, the contralateral contractions reflected the direction of the target movement rather than simply the activity of the muscles activated on the target side. These observations provide strong evidence that motor commands are organized in an extrinsic, direction-related reference frame, as opposed to an internal muscle-related reference frame.


Assuntos
Lateralidade Funcional , Atividade Motora , Contração Muscular , Adulto , Análise de Variância , Eletromiografia , Feminino , Dedos/fisiologia , Humanos , Masculino , Força Muscular
3.
Front Hum Neurosci ; 8: 922, 2014.
Artigo em Inglês | MEDLINE | ID: mdl-25452723

RESUMO

Involuntary contractions of paralyzed muscles (spasms) commonly disrupt daily activities and rehabilitation after human spinal cord injury (SCI). Our aim was to examine the recruitment, firing rate modulation, and derecruitment of motor units that underlie spasms of thenar muscles after cervical SCI. Intramuscular electromyographic activity (EMG), surface EMG, and force were recorded during thenar muscle spasms that occurred spontaneously or that were triggered by movement of a shoulder or leg. Most spasms were submaximal (mean: 39%, SD: 33 of the force evoked by median nerve stimulation at 50 Hz) with strong relationships between EMG and force (R (2) > 0.69). Unit recruitment occurred over a wide force range (0.2-103% of 50 Hz force). Significant unit rate modulation occurred during spasms (frequency at 25% maximal force: 8.8 Hz, 3.3 SD; at maximal force: 16.1 Hz, 4.1 SD). Mean recruitment frequency (7.1 Hz, 3.2 SD) was significantly higher than derecruitment frequency (5.4 Hz, 2.4 SD). Coactive unit pairs that fired for more than 4 s showed high (R (2) > 0.7, n = 4) or low (R (2):0.3-0.7, n = 12) rate-rate correlations, and derecruitment reversals (21 pairs, 29%). Later recruited units had higher or lower maximal firing rates than lower threshold units. These discrepant data show that coactive motoneurons are drive both by common inputs and by synaptic inputs from different sources during muscle spasms. Further, thenar motoneurons can still fire at high rates in response to various peripheral inputs after SCI, supporting the idea that low maximal voluntary firing rates and forces in thenar muscles result from reduced descending drive.

4.
Neurorehabil Neural Repair ; 26(1): 58-67, 2012 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-21903974

RESUMO

BACKGROUND: Motor unit firing frequencies are low during maximal voluntary contractions (MVCs) of human thenar muscles impaired by cervical spinal cord injury (SCI). OBJECTIVE: This study aimed to examine whether thenar motor unit firing frequencies increase when driven by both maximal voluntary drive and other concurrent inputs compared with an MVC alone. METHODS: Motor unit firing rates, force, and surface electromyographic activity (EMG) were compared across 2 contractions: (a) MVC alone and (b) MVC combined with another input (combination contraction). Other inputs (conditions) included vibration, heat, or cold applied to the anterior surface of the forearm, electrical stimulation delivered to the anterior surface of the middle finger, a muscle spasm, or a voluntary contraction of the contralateral thenar muscles against resistance. RESULTS: The maximal firing frequency (n = 68 units), force, and electromyographic activity (n = 92 contraction pairs) were all significantly higher during the combined contractions compared with MVCs alone. There was a 3-way interaction between contraction, condition, and subject for maximal motor unit firing rates, force, and EMG. Thus, combined contraction responses were different for conditions across subjects. Some conditions (eg, a muscle spasm) resulted in more effective and more frequent responses (increases in unit firing frequency, force, EMG in >50% contractions) than others. Recruitment of new units also occurred in combined contractions. CONCLUSIONS: Motoneurons are still responsive to additional afferent inputs from various sources when rate modulation from voluntary drive is limited by SCI. Individuals with SCI may be able to combine inputs to control functional tasks they cannot perform with voluntary drive alone.


Assuntos
Neurônios Motores/fisiologia , Contração Muscular/fisiologia , Força Muscular/fisiologia , Músculo Esquelético/fisiopatologia , Recrutamento Neurofisiológico/fisiologia , Traumatismos da Medula Espinal/fisiopatologia , Adulto , Vértebras Cervicais , Estimulação Elétrica , Eletromiografia , Feminino , Mãos/fisiopatologia , Humanos , Masculino , Pessoa de Meia-Idade , Espasmo/fisiopatologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA