Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros

Base de dados
País/Região como assunto
Ano de publicação
Tipo de documento
Assunto da revista
País de afiliação
Intervalo de ano de publicação
1.
Pest Manag Sci ; 80(1): 65-71, 2024 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-37682845

RESUMO

The high-level view of global food systems identifies three all-encompassing barriers to the adoption of food systems solutions: knowledge, policy, and finance. These barriers, and the siloed characteristics of each of these, have hindered the development and adoption of microbial herbicides. How knowledge, policy, and finance are related to the Toothpick Project's path of commercializing a new bioherbicide, early in the scope of the industry, is discussed here. The Toothpick Project's innovation, developed over four decades and commercialized in 2021, uses strains of Fusarium oxysporum f.sp. strigae selected for overproduction and excretion of specific amino acids, killing the parasitic weed Striga hermonthica (Striga or witchweed), Africa's worst pest threat to food security. Historically, bioherbicides have not been a sufficient alternative to the dominant use of synthetic chemical herbicides. To be used safely as bioherbicides, plant pathogens need to be host specific, non-toxic, and yet sufficiently virulent to control a specific weed. For commercialization, bioherbicides must be affordable and require a sufficient shelf life for distribution. Given the current triple storm encountered by the chemical herbicide industry (herbicide-resistant weeds, lawsuits, and consumer pushback), there exists an opportunity to use certain plant pathogens as bioherbicides by enhancing their virulence. By discussing barriers in the scope of knowledge, policy, and finance in the development of the Toothpick Project's new microbial bioherbicide, we hope to help others to anticipate the challenges and provide change-leaders, particularly in policy and finance, a ground level perspective of bioherbicide development. © 2023 The Authors. Pest Management Science published by John Wiley & Sons Ltd on behalf of Society of Chemical Industry.


Assuntos
Herbicidas , Striga , Quênia , Virulência , Plantas Daninhas , Herbicidas/farmacologia
2.
Front Plant Sci ; 7: 1121, 2016.
Artigo em Inglês | MEDLINE | ID: mdl-27551284

RESUMO

Striga hermonthica (witchweed) is a parasitic weed that attacks and significantly reduces the yields of maize, sorghum, millet, and sugarcane throughout sub-Saharan Africa. Low cost management methods such as hand weeding, short crop rotations, trap cropping, or conventional biocontrol have not been effective. Likewise, Striga-tolerant or herbicide-resistant maize cultivars are higher yielding, but are often beyond the economic means of sustenance farmers. The fungal pathogen, Fusarium oxysporum f.sp. strigae, has been the object of numerous studies to develop Striga biocontrol. Under experimental conditions this pathogen can reduce the incidence of Striga infestation but field use is not extensive, perhaps because it has not been sufficiently effective in restoring crop yield and reducing the soil Striga seed bank. Here we brought together Kenyan and US crop scientists with smallholder farmers to develop and validate an effective biocontrol strategy for management of Striga on smallholder farms. Key components of this research project were the following: (1) Development of a two-step method of fungal delivery, including laboratory coating of primary inoculum on toothpicks, followed by on-farm production of secondary field inoculum in boiled rice enabling delivery of vigorous, fresh inoculum directly to the seedbed; (2) Training of smallholder farmers (85% women), to produce the biocontrol agent and incorporate it into their maize plantings in Striga-infested soils and collect agronomic data. The field tests expanded from 30 smallholder farmers to a two-season, 500-farmer plot trial including paired plus and minus biocontrol plots with fertilizer and hybrid seed in both plots and; (3) Concerted selection of variants of the pathogen identified for enhanced virulence, as has been demonstrated in other host parasite systems were employed here on Striga via pathogen excretion of the amino acids L-leucine and L-tyrosine that are toxic to Striga but innocuous to maize. This overall strategy resulted in an average of >50% increased maize yield in the March to June rains season and >40% in the September to December rains season. Integration of this enhanced plant pathogen to Striga management in maize can significantly increase the maize yield of smallholder farmers in Kenya.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA