Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 9 de 9
Filtrar
1.
Genes Dev ; 32(9-10): 723-736, 2018 05 01.
Artigo em Inglês | MEDLINE | ID: mdl-29764918

RESUMO

The K50 (lysine at amino acid position 50) homeodomain (HD) protein Orthodenticle (Otd) is critical for anterior patterning and brain and eye development in most metazoans. In Drosophila melanogaster, another K50HD protein, Bicoid (Bcd), has evolved to replace Otd's ancestral function in embryo patterning. Bcd is distributed as a long-range maternal gradient and activates transcription of a large number of target genes, including otd Otd and Bcd bind similar DNA sequences in vitro, but how their transcriptional activities are integrated to pattern anterior regions of the embryo is unknown. Here we define three major classes of enhancers that are differentially sensitive to binding and transcriptional activation by Bcd and Otd. Class 1 enhancers are initially activated by Bcd, and activation is transferred to Otd via a feed-forward relay (FFR) that involves sequential binding of the two proteins to the same DNA motif. Class 2 enhancers are activated by Bcd and maintained by an Otd-independent mechanism. Class 3 enhancers are never bound by Bcd, but Otd binds and activates them in a second wave of zygotic transcription. The specific activities of enhancers in each class are mediated by DNA motif variants preferentially bound by Bcd or Otd and the presence or absence of sites for cofactors that interact with these proteins. Our results define specific patterning roles for Bcd and Otd and provide mechanisms for coordinating the precise timing of gene expression patterns during embryonic development.


Assuntos
Proteínas de Drosophila/genética , Proteínas de Drosophila/metabolismo , Drosophila melanogaster/embriologia , Drosophila melanogaster/genética , Regulação da Expressão Gênica no Desenvolvimento , Proteínas de Homeodomínio/genética , Proteínas de Homeodomínio/metabolismo , Transativadores/genética , Transativadores/metabolismo , Motivos de Aminoácidos , Animais , Padronização Corporal/genética , Drosophila melanogaster/metabolismo , Desenvolvimento Embrionário/efeitos dos fármacos , Desenvolvimento Embrionário/genética , Elementos Facilitadores Genéticos/genética , Ligação Proteica
2.
Int Wound J ; 20(8): 3279-3288, 2023 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-37132372

RESUMO

High bacterial loads within chronic wounds increase the risk of infection and complication. Detection and localization of bacterial loads through point-of-care fluorescence (FL) imaging can objectively inform and support bacterial treatment decisions. This single time-point, retrospective analysis describes the treatment decisions made on 1000 chronic wounds (DFUs, VLUs, PIs, surgical wounds, burns, and others) at 211 wound-care facilities across 36 US states. Clinical assessment findings and treatment plans derived from them, as well as subsequent FL-imaging (MolecuLight®) findings and any associated treatment plan changes, were recorded for analysis. FL signals indicating elevated bacterial loads were observed in 701 wounds (70.8%), while only 293 (29.6%) showed signs/symptoms of infection. After FL-imaging, treatment plans changed in 528 wounds as follows: more extensive debridement (18.7%), more extensive hygiene (17.2%), FL-targeted debridement (17.2%), new topical therapies (10.1%), new systemic antibiotic prescriptions (9.0%), FL-guided sampling for microbiological analysis (6.2%), and changes in dressing selection (3.2%). These real-world findings of asymptomatic bacterial load/biofilm incidence, and of the frequent treatment plan changes post-imaging, are in accordance with clinical trial findings using this technology. These data, from a range of wound types, facilities, and clinician skill sets, suggest that point-of-care FL-imaging information improves bacterial infection management.


Assuntos
Infecção dos Ferimentos , Humanos , Infecção dos Ferimentos/microbiologia , Desbridamento/métodos , Estudos Retrospectivos , Bactérias , Biofilmes
3.
Environ Microbiol Rep ; 16(3): e13263, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38705733

RESUMO

Deep-sea methane seeps are amongst the most biologically productive environments on Earth and are often characterised by stable, low oxygen concentrations and microbial communities that couple the anaerobic oxidation of methane to sulfate reduction or iron reduction in the underlying sediment. At these sites, ferrous iron (Fe2+) can be produced by organoclastic iron reduction, methanotrophic-coupled iron reduction, or through the abiotic reduction by sulfide produced by the abundant sulfate-reducing bacteria at these sites. The prevalence of Fe2+in the anoxic sediments, as well as the availability of oxygen in the overlying water, suggests that seeps could also harbour communities of iron-oxidising microbes. However, it is unclear to what extent Fe2+ remains bioavailable and in solution given that the abiotic reaction between sulfide and ferrous iron is often assumed to scavenge all ferrous iron as insoluble iron sulfides and pyrite. Accordingly, we searched the sea floor at methane seeps along the Cascadia Margin for microaerobic, neutrophilic iron-oxidising bacteria, operating under the reasoning that if iron-oxidising bacteria could be isolated from these environments, it could indicate that porewater Fe2+ can persist is long enough for biology to outcompete pyritisation. We found that the presence of sulfate in our enrichment media muted any obvious microbially-driven iron oxidation with most iron being precipitated as iron sulfides. Transfer of enrichment cultures to sulfate-depleted media led to dynamic iron redox cycling relative to abiotic controls and sulfate-containing cultures, and demonstrated the capacity for biogenic iron (oxyhydr)oxides from a methane seep-derived community. 16S rRNA analyses revealed that removing sulfate drastically reduced the diversity of enrichment cultures and caused a general shift from a Gammaproteobacteria-domainated ecosystem to one dominated by Rhodobacteraceae (Alphaproteobacteria). Our data suggest that, in most cases, sulfur cycling may restrict the biological "ferrous wheel" in contemporary environments through a combination of the sulfur-adapted sediment-dwelling ecosystems and the abiotic reactions they influence.


Assuntos
Bactérias , Sedimentos Geológicos , Ferro , Metano , Oxirredução , Enxofre , Metano/metabolismo , Ferro/metabolismo , Enxofre/metabolismo , Sedimentos Geológicos/microbiologia , Sedimentos Geológicos/química , Bactérias/metabolismo , Bactérias/genética , Bactérias/classificação , Água do Mar/microbiologia , Água do Mar/química , Sulfetos/metabolismo , Sulfatos/metabolismo , RNA Ribossômico 16S/genética , Filogenia
4.
Microbiol Resour Announc ; 12(12): e0064023, 2023 Dec 14.
Artigo em Inglês | MEDLINE | ID: mdl-37975689

RESUMO

Serratia sp. B1 is a bacterial species isolated from soil highly impacted by perfluoroalkyl and polyfluoroalkyl substances, a family of biopersistent contaminants colloquially known as "forever chemicals." Here, we report the genome of Serratia sp. B1, sequenced with Oxford Nanopore Technology. The genome consists of one 5.14 Mbp chromosome and one 92 kb plasmid.

5.
PNAS Nexus ; 2(12): pgad421, 2023 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-38111821

RESUMO

Iron is one of the Earth's most abundant elements and is required for essentially all forms of life. Yet, iron's reactivity with oxygen and poor solubility in its oxidized form (Fe3+) mean that it is often a limiting nutrient in oxic, near-neutral pH environments like Earth's ocean. In addition to being a vital nutrient, there is a diversity of aerobic organisms that oxidize ferrous iron (Fe2+) to harness energy for growth and biosynthesis. Accordingly, these organisms rely on access to co-existing Fe2+ and O2 to survive. It is generally presumed that such aerobic iron-oxidizing bacteria (FeOB) are relegated to low-oxygen regimes where abiotic iron oxidation rates are slower, yet some FeOB live in higher oxygen environments where they cannot rely on lower oxygen concentrations to overcome abiotic competition. We hypothesized that FeOB chemically alter their environment to limit abiotic interactions between Fe2+ and O2. To test this, we incubated the secreted metabolites (collectively known as the exometabolome) of the deep-sea iron- and hydrogen-oxidizing bacterium Ghiorsea bivora TAG-1 with ferrous iron and oxygen. We found that this FeOB's iron-oxidizing exometabolome markedly impedes the abiotic oxidation of ferrous iron, increasing the half-life of Fe2+ 100-fold from ∼3 to ∼335 days in the presence of O2, while the exometabolome of TAG-1 grown on hydrogen had no effect. Moreover, the few precipitates that formed in the presence of TAG-1's iron-oxidizing exometabolome were poorly crystalline, compared with the abundant iron particles that mineralized in the absence of abiotic controls. We offer an initial exploration of TAG-1's iron-oxidizing exometabolome and discuss potential key contributors to this process. Overall, our findings demonstrate that the exometabolome as a whole leads to a sustained accumulation of ferrous iron in the presence of oxygen, consequently altering the redox equilibrium. This previously unknown adaptation likely enables these microorganisms to persist in an iron-oxidizing and iron-precipitating world and could have impacts on the bioavailability of iron to FeOB and other life in iron-limiting environments.

6.
mBio ; 13(1): e0290421, 2021 02 22.
Artigo em Inglês | MEDLINE | ID: mdl-35100867

RESUMO

Some bacteria and archaea have evolved the means to use extracellular electron donors and acceptors for energy metabolism, a phenomenon broadly known as extracellular electron transfer (EET). One such EET mechanism is the transmembrane electron conduit MtrCAB, which has been shown to transfer electrons derived from metabolic substrates to electron acceptors, like Fe(III) and Mn(IV) oxides, outside the cell. Although most studies of MtrCAB-mediated EET have been conducted in Shewanella oneidensis MR-1, recent investigations in Vibrio and Aeromonas species have revealed that the electron-donating proteins that support MtrCAB in Shewanella are not as representative as previously thought. This begs the question of how widespread the capacity for MtrCAB-mediated EET is, the changes it has accrued in different lineages, and where these lineages persist today. Here, we employed a phylogenetic and comparative genomics approach to identify the MtrCAB system across all domains of life. We found mtrCAB in the genomes of numerous diverse Bacteria from a wide range of environments, and the patterns therein strongly suggest that mtrCAB was distributed through both horizontal and subsequent vertical transmission, and with some cases indicating downstream modular diversification of both its core and accessory components. Our data point to an emerging evolutionary story about metal-oxidizing and -reducing metabolism, demonstrates that this capacity for EET has broad relevance to a diversity of taxa and the biogeochemical cycles they drive, and lays the foundation for further studies to shed light on how this mechanism may have coevolved with Earth's redox landscape. IMPORTANCE While many metabolisms make use of soluble, cell-permeable substrates like oxygen or hydrogen, there are other substrates, like iron or manganese, that cannot be brought into the cell. Some bacteria and archaea have evolved the means to directly "plug in" to such environmental electron reservoirs in a process known as extracellular electron transfer (EET), making them powerful agents of biogeochemical change and promising vehicles for bioremediation and alternative energy. Yet the diversity, distribution, and evolution of EET mechanisms are poorly constrained. Here, we present findings showing that the genes encoding one such EET system (mtrCAB) are present in a broad diversity of bacteria found in a wide range of environments, emphasizing the ubiquity and potential impact of EET in our biosphere. Our results suggest that these genes have been disseminated largely through horizontal transfer, and the changes they have accrued in these lineages potentially reflect adaptations to changing environments.


Assuntos
Elétrons , Shewanella , Compostos Férricos/metabolismo , Filogenia , Transporte de Elétrons , Oxirredução , Bactérias/metabolismo , Archaea/metabolismo , Shewanella/genética
7.
Acta Crystallogr D Biol Crystallogr ; 66(Pt 8): 855-64, 2010 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-20693684

RESUMO

Crystals of biological macromolecules often exhibit considerable inter-crystal and intra-crystal variation in diffraction quality. This requires the evaluation of many samples prior to data collection, a practice that is already widespread in macromolecular crystallography. As structural biologists move towards tackling ever more ambitious projects, new automated methods of sample evaluation will become crucial to the success of many projects, as will the availability of synchrotron-based facilities optimized for high-throughput evaluation of the diffraction characteristics of samples. Here, two examples of the types of advanced sample evaluation that will be required are presented: searching within a sample-containing loop for microcrystals using an X-ray beam of 5 microm diameter and selecting the most ordered regions of relatively large crystals using X-ray beams of 5-50 microm in diameter. A graphical user interface developed to assist with these screening methods is also presented. For the case in which the diffraction quality of a relatively large crystal is probed using a microbeam, the usefulness and implications of mapping diffraction-quality heterogeneity (diffraction cartography) are discussed. The implementation of these techniques in the context of planned upgrades to the ESRF's structural biology beamlines is also presented.


Assuntos
Cristalografia por Raios X/métodos , Animais , Bovinos , Mitocôndrias/enzimologia , ATPases Translocadoras de Prótons/análise , ATPases Translocadoras de Prótons/química , Receptores Adrenérgicos beta/análise , Receptores Adrenérgicos beta/química , Termolisina/análise , Termolisina/química
8.
J Am Podiatr Med Assoc ; 108(6): 560-563, 2018 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-30742523

RESUMO

In 1912, the Illinois College of Chiropody and Orthopedics was founded, and is today known as the Dr. William M. Scholl College of Podiatric Medicine. It has been an integral part of Rosalind Franklin University of Medicine and Science in North Chicago, Illinois since 2001. Through the ensuing decades, Scholl College alumni have been instrumental in moving the profession forward.


Assuntos
Relações Interprofissionais , Inovação Organizacional , Podiatria/educação , Faculdades de Medicina/organização & administração , Chicago , Currículo , Educação Médica/história , História do Século XX , História do Século XXI , Humanos , Podiatria/história
9.
PLoS One ; 8(11): e80844, 2013.
Artigo em Inglês | MEDLINE | ID: mdl-24244721

RESUMO

Organisms are often exposed to environmental pressures that affect homeostasis, so it is important to understand the biological basis of stress-response. Various biological mechanisms have evolved to help cells cope with potentially cytotoxic changes in their environment. miRNAs are small non-coding RNAs which are able to regulate mRNA stability. It has been suggested that miRNAs may tip the balance between continued cytorepair and induction of apoptosis in response to stress. There is a wealth of data in the literature showing the effect of environmental stress on miRNAs, but it is scattered in a large number of disparate publications. Meta-analyses of this data would produce added insight into the molecular mechanisms of stress-response. To facilitate this we created and manually curated the miRStress database, which describes the changes in miRNA levels following an array of stress types in eukaryotic cells. Here we describe this database and validate the miRStress tool for analysing miRNAs that are regulated by stress. To validate the database we performed a cross-species analysis to identify miRNAs that respond to radiation. The analysis tool confirms miR-21 and miR-34a as frequently deregulated in response to radiation, but also identifies novel candidates as potentially important players in this stress response, including miR-15b, miR-19b, and miR-106a. Similarly, we used the miRStress tool to analyse hypoxia-responsive miRNAs. The most frequently deregulated miRNAs were miR-210 and miR-21, as expected. Several other miRNAs were also found to be associated with hypoxia, including miR-181b, miR-26a/b, miR-106a, miR-213 and miR-192. Therefore the miRStress tool has identified miRNAs with hitherto unknown or under-appreciated roles in the response to specific stress types. The miRStress tool, which can be used to uncover new insight into the biological roles of miRNAs, and also has the potential to unearth potential biomarkers for therapeutic response, is freely available at http://mudshark.brookes.ac.uk/MirStress.


Assuntos
Hipóxia Celular/fisiologia , MicroRNAs/genética , Hipóxia Celular/genética , Linhagem Celular , Humanos , Estabilidade de RNA/genética , Radiação
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA