Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 20
Filtrar
1.
Proc Natl Acad Sci U S A ; 119(39): e2209267119, 2022 09 27.
Artigo em Inglês | MEDLINE | ID: mdl-36122240

RESUMO

Inositol 1,4,5-trisphosphate receptors (IP3Rs) initiate a diverse array of physiological responses by carefully orchestrating intracellular calcium (Ca2+) signals in response to various external cues. Notably, IP3R channel activity is determined by several obligatory factors, including IP3, Ca2+, and ATP. The critical basic amino acid residues in the N-terminal IP3-binding core (IBC) region that facilitate IP3 binding are well characterized. In contrast, the residues conferring regulation by Ca2+ have yet to be ascertained. Using comparative structural analysis of Ca2+-binding sites identified in two main families of intracellular Ca2+-release channels, ryanodine receptors (RyRs) and IP3Rs, we identified putative acidic residues coordinating Ca2+ in the cytosolic calcium sensor region in IP3Rs. We determined the consequences of substituting putative Ca2+ binding, acidic residues in IP3R family members. We show that the agonist-induced Ca2+ release, single-channel open probability (P0), and Ca2+ sensitivities are markedly altered when the negative charge on the conserved acidic side chain residues is neutralized. Remarkably, neutralizing the negatively charged side chain on two of the residues individually in the putative Ca2+-binding pocket shifted the Ca2+ required to activate IP3R to higher concentrations, indicating that these residues likely are a component of the Ca2+ activation site in IP3R. Taken together, our findings indicate that Ca2+ binding to a well-conserved activation site is a common underlying mechanism resulting in increased channel activity shared by IP3Rs and RyRs.


Assuntos
Cálcio , Receptores de Inositol 1,4,5-Trifosfato , Canal de Liberação de Cálcio do Receptor de Rianodina , Trifosfato de Adenosina , Aminoácidos Básicos , Sítios de Ligação , Cálcio/metabolismo , Inositol 1,4,5-Trifosfato/metabolismo , Receptores de Inositol 1,4,5-Trifosfato/genética , Receptores de Inositol 1,4,5-Trifosfato/metabolismo , Canal de Liberação de Cálcio do Receptor de Rianodina/metabolismo
2.
Cell ; 133(1): 53-65, 2008 Apr 04.
Artigo em Inglês | MEDLINE | ID: mdl-18394989

RESUMO

Mice with a malignant hyperthermia mutation (Y522S) in the ryanodine receptor (RyR1) display muscle contractures, rhabdomyolysis, and death in response to elevated environmental temperatures. We demonstrate that this mutation in RyR1 causes Ca(2+) leak, which drives increased generation of reactive nitrogen species (RNS). Subsequent S-nitrosylation of the mutant RyR1 increases its temperature sensitivity for activation, producing muscle contractures upon exposure to elevated temperatures. The Y522S mutation in humans is associated with central core disease. Many mitochondria in the muscle of heterozygous Y522S mice are swollen and misshapen. The mutant muscle displays decreased force production and increased mitochondrial lipid peroxidation with aging. Chronic treatment with N-acetylcysteine protects against mitochondrial oxidative damage and the decline in force generation. We propose a feed-forward cyclic mechanism that increases the temperature sensitivity of RyR1 activation and underlies heat stroke and sudden death. The cycle eventually produces a myopathy with damaged mitochondria.


Assuntos
Morte Súbita/etiologia , Golpe de Calor/metabolismo , Músculo Esquelético/metabolismo , Canal de Liberação de Cálcio do Receptor de Rianodina/genética , Canal de Liberação de Cálcio do Receptor de Rianodina/metabolismo , Animais , Cálcio/metabolismo , Temperatura Alta , Humanos , Hipertermia Maligna/metabolismo , Camundongos , Mitocôndrias/metabolismo , Músculo Esquelético/patologia , Nitrosação , Estresse Oxidativo , Espécies Reativas de Nitrogênio , Espécies Reativas de Oxigênio
3.
Nature ; 527(7578): 336-41, 2015 Nov 19.
Artigo em Inglês | MEDLINE | ID: mdl-26458101

RESUMO

Inositol-1,4,5-trisphosphate receptors (InsP3Rs) are ubiquitous ion channels responsible for cytosolic Ca(2+) signalling and essential for a broad array of cellular processes ranging from contraction to secretion, and from proliferation to cell death. Despite decades of research on InsP3Rs, a mechanistic understanding of their structure-function relationship is lacking. Here we present the first, to our knowledge, near-atomic (4.7 Å) resolution electron cryomicroscopy structure of the tetrameric mammalian type 1 InsP3R channel in its apo-state. At this resolution, we are able to trace unambiguously ∼85% of the protein backbone, allowing us to identify the structural elements involved in gating and modulation of this 1.3-megadalton channel. Although the central Ca(2+)-conduction pathway is similar to other ion channels, including the closely related ryanodine receptor, the cytosolic carboxy termini are uniquely arranged in a left-handed α-helical bundle, directly interacting with the amino-terminal domains of adjacent subunits. This configuration suggests a molecular mechanism for allosteric regulation of channel gating by intracellular signals.


Assuntos
Microscopia Crioeletrônica , Receptores de Inositol 1,4,5-Trifosfato/metabolismo , Receptores de Inositol 1,4,5-Trifosfato/ultraestrutura , Regulação Alostérica , Animais , Apoproteínas/química , Apoproteínas/metabolismo , Apoproteínas/ultraestrutura , Cálcio/metabolismo , Sinalização do Cálcio , Citosol/química , Citosol/metabolismo , Receptores de Inositol 1,4,5-Trifosfato/química , Ativação do Canal Iônico , Modelos Moleculares , Dobramento de Proteína , Estrutura Quaternária de Proteína , Estrutura Secundária de Proteína , Estrutura Terciária de Proteína , Subunidades Proteicas/química , Subunidades Proteicas/metabolismo , Ratos , Canal de Liberação de Cálcio do Receptor de Rianodina/química , Canal de Liberação de Cálcio do Receptor de Rianodina/metabolismo
4.
Adv Exp Med Biol ; 981: 121-147, 2017.
Artigo em Inglês | MEDLINE | ID: mdl-29594860

RESUMO

Inositol 1,4,5-trisphosphate receptors (IP3Rs) are ubiquitously expressed intracellular ligand-gated Ca2+ channels present on the endoplasmic reticulum of virtually all eukaryotic cells. These channels mediate the Ca2+ release from intracellular stores in response to activation by the signaling molecule IP3, which functions to transmit diverse signals received by the cell, e.g. from hormones, neurotransmitters, growth factors and hypertrophic stimuli, to various signaling pathways within the cell. Thus, IP3R channels can be conceptualized as highly dynamic scaffold membrane protein complexes, where binding of ligands can change the scaffold structure leading to cellular Ca2+ signals that direct markedly different cellular actions. Although extensively characterized in physiological and biochemical studies, the detailed mechanisms of how IP3Rs produce highly controlled Ca2+ signals in response to diversified extra- and intracellular stimuli remains unknown and requires high-resolution knowledge of channel molecular architecture. Recently, single-particle electron cryomicroscopy (cryo-EM) has yielded a long-awaited near-atomic resolution structure of the entire full-length type 1 IP3R. This structure provides important insights into the molecular underpinnings of ligand-mediated activation and regulation of IP3R. In this chapter, we evaluate available information and research progress on the structure of IP3R channel in an attempt to shed light on its function.


Assuntos
Sinalização do Cálcio/fisiologia , Cálcio/química , Cálcio/metabolismo , Receptores de Inositol 1,4,5-Trifosfato/química , Receptores de Inositol 1,4,5-Trifosfato/metabolismo , Animais , Microscopia Crioeletrônica , Humanos , Receptores de Inositol 1,4,5-Trifosfato/genética , Estrutura Quaternária de Proteína , Relação Estrutura-Atividade
5.
Hum Mol Genet ; 22(21): 4339-48, 2013 Nov 01.
Artigo em Inglês | MEDLINE | ID: mdl-23773997

RESUMO

Coarctation of the aorta (CoA) and hypoplastic left heart syndrome (HLHS) have been reported in rare individuals with large terminal deletions of chromosome 15q26. However, no single gene important for left ventricular outflow tract (LVOT) development has been identified in this region. Using array-comparative genomic hybridization, we identified two half-siblings with CoA with a 2.2 Mb deletion on 15q26.2, inherited from their mother, who was mosaic for this deletion. This interval contains an evolutionary conserved, protein-coding gene, MCTP2 (multiple C2-domains with two transmembrane regions 2). Using gene-specific array screening in 146 individuals with non-syndromic LVOT obstructive defects, another individual with HLHS and CoA was found to have a de novo 41 kb intragenic duplication within MCTP2, predicted to result in premature truncation, p.F697X. Alteration of Mctp2 gene expression in Xenopus laevis embryos by morpholino knockdown and mRNA overexpression resulted in the failure of proper OT development, confirming the functional importance of this dosage-sensitive gene for cardiogenesis. Our results identify MCTP2 as a novel genetic cause of CoA and related cardiac malformations.


Assuntos
Coartação Aórtica/genética , Ventrículos do Coração/crescimento & desenvolvimento , Síndrome do Coração Esquerdo Hipoplásico/genética , Proteínas de Membrana/genética , Animais , Hibridização Genômica Comparativa , Feminino , Dosagem de Genes , Técnicas de Silenciamento de Genes , Predisposição Genética para Doença , Variação Genética , Humanos , Síndrome do Coração Esquerdo Hipoplásico/etnologia , Masculino , Modelos Animais , Análise de Sequência de DNA , Deleção de Sequência , Xenopus laevis/embriologia , Xenopus laevis/genética , Xenopus laevis/crescimento & desenvolvimento
6.
Cell Calcium ; 114: 102770, 2023 09.
Artigo em Inglês | MEDLINE | ID: mdl-37393815

RESUMO

Inositol 1,4,5-trisphosphate receptors (IP3Rs) are ubiquitously expressed large-conductance Ca2+-permeable channels predominantly localized to the endoplasmic reticulum (ER) membranes of virtually all eukaryotic cell types. IP3Rs work as Ca2+ signaling hubs through which diverse extracellular stimuli and intracellular inputs are processed and then integrated to result in delivery of Ca2+ from the ER lumen to generate cytosolic Ca2+ signals with precise temporal and spatial properties. IP3R-mediated Ca2+ signals control a vast repertoire of cellular functions ranging from gene transcription and secretion to the more enigmatic brain activities such as learning and memory. IP3Rs open and release Ca2+ when they bind both IP3 and Ca2+, the primary channel agonists. Despite overwhelming evidence supporting functional interplay between IP3 and Ca2+ in activation and inhibition of IP3Rs, the mechanistic understanding of how IP3R channels convey their gating through the interplay of two primary agonists remains one of the major puzzles in the field. The last decade has seen much progress in the use of cryogenic electron microscopy to elucidate the molecular mechanisms of ligand binding, ion permeation, ion selectivity and gating of the IP3R channels. The results of these studies, summarized in this review, provide a prospective view of what the future holds in structural and functional research of IP3Rs.


Assuntos
Cálcio , Inositol 1,4,5-Trifosfato , Receptores de Inositol 1,4,5-Trifosfato/metabolismo , Ligantes , Estudos Prospectivos , Cálcio/metabolismo , Inositol 1,4,5-Trifosfato/metabolismo , Sinalização do Cálcio/fisiologia
7.
Cell Mol Immunol ; 20(1): 11-25, 2023 01.
Artigo em Inglês | MEDLINE | ID: mdl-36302985

RESUMO

Calcium signaling is essential for lymphocyte activation, with genetic disruptions of store-operated calcium (Ca2+) entry resulting in severe immunodeficiency. The inositol 1,4,5-trisphosphate receptor (IP3R), a homo- or heterotetramer of the IP3R1-3 isoforms, amplifies lymphocyte signaling by releasing Ca2+ from endoplasmic reticulum stores following antigen stimulation. Although knockout of all IP3R isoforms in mice causes immunodeficiency, the seeming redundancy of the isoforms is thought to explain the absence of variants in human immunodeficiency. In this study, we identified compound heterozygous variants of ITPR3 (a gene encoding IP3R subtype 3) in two unrelated Caucasian patients presenting with immunodeficiency. To determine whether ITPR3 variants act in a nonredundant manner and disrupt human immune responses, we characterized the Ca2+ signaling capacity, the lymphocyte response, and the clinical phenotype of these patients. We observed disrupted Ca2+ signaling in patient-derived fibroblasts and immune cells, with abnormal proliferation and activation responses following T-cell receptor stimulation. Reconstitution of IP3R3 in IP3R knockout cell lines led to the identification of variants as functional hypomorphs that showed reduced ability to discriminate between homeostatic and induced states, validating a genotype-phenotype link. These results demonstrate a functional link between defective endoplasmic reticulum Ca2+ channels and immunodeficiency and identify IP3Rs as diagnostic targets for patients with specific inborn errors of immunity. These results also extend the known cause of Ca2+-associated immunodeficiency from store-operated entry to impaired Ca2+ mobilization from the endoplasmic reticulum, revealing a broad sensitivity of lymphocytes to genetic defects in Ca2+ signaling.


Assuntos
Sinalização do Cálcio , Cálcio , Receptores de Inositol 1,4,5-Trifosfato , Animais , Humanos , Camundongos , Cálcio/metabolismo , Sinalização do Cálcio/genética , Sinalização do Cálcio/imunologia , Homeostase , Receptores de Inositol 1,4,5-Trifosfato/genética , Receptores de Inositol 1,4,5-Trifosfato/imunologia , Receptores de Inositol 1,4,5-Trifosfato/metabolismo , Isoformas de Proteínas/metabolismo , Doenças do Sistema Imunitário/metabolismo
8.
Proc Natl Acad Sci U S A ; 106(13): 5135-40, 2009 Mar 31.
Artigo em Inglês | MEDLINE | ID: mdl-19279214

RESUMO

Voltage-dependent calcium channels (Ca(V)) open in response to changes in membrane potential, but their activity is modulated by Ca(2+) binding to calmodulin (CaM). Structural studies of this family of channels have focused on CaM bound to the IQ motif; however, the minimal differences between structures cannot adequately describe CaM's role in the regulation of these channels. We report a unique crystal structure of a 77-residue fragment of the Ca(V)1.2 alpha(1) subunit carboxyl terminus, which includes a tandem of the pre-IQ and IQ domains, in complex with Ca(2+).CaM in 2 distinct binding modes. The structure of the Ca(V)1.2 fragment is an unusual dimer of 2 coiled-coiled pre-IQ regions bridged by 2 Ca(2+).CaMs interacting with the pre-IQ regions and a canonical Ca(V)1-IQ-Ca(2+).CaM complex. Native Ca(V)1.2 channels are shown to be a mixture of monomers/dimers and a point mutation in the pre-IQ region predicted to abolish the coiled-coil structure significantly reduces Ca(2+)-dependent inactivation of heterologously expressed Ca(V)1.2 channels.


Assuntos
Canais de Cálcio Tipo L/química , Calmodulina/química , Proteínas de Ligação ao Cálcio/química , Cristalografia por Raios X , Dimerização , Humanos , Mutação Puntual , Estrutura Terciária de Proteína
9.
Nat Commun ; 13(1): 6942, 2022 11 14.
Artigo em Inglês | MEDLINE | ID: mdl-36376291

RESUMO

Inositol-1,4,5-trisphosphate receptors (IP3Rs) are activated by IP3 and Ca2+ and their gating is regulated by various intracellular messengers that finely tune the channel activity. Here, using single particle cryo-EM analysis we determined 3D structures of the nanodisc-reconstituted IP3R1 channel in two ligand-bound states. These structures provide unprecedented details governing binding of IP3, Ca2+ and ATP, revealing conformational changes that couple ligand-binding to channel opening. Using a deep-learning approach and 3D variability analysis we extracted molecular motions of the key protein domains from cryo-EM density data. We find that IP3 binding relies upon intrinsic flexibility of the ARM2 domain in the tetrameric channel. Our results highlight a key role of dynamic side chains in regulating gating behavior of IP3R channels. This work represents a stepping-stone to developing mechanistic understanding of conformational pathways underlying ligand-binding, activation and regulation of the channel.


Assuntos
Cálcio , Inositol 1,4,5-Trifosfato , Receptores de Inositol 1,4,5-Trifosfato/metabolismo , Cálcio/metabolismo , Ligantes , Domínios Proteicos , Inositol 1,4,5-Trifosfato/metabolismo , Sinalização do Cálcio
10.
Commun Biol ; 4(1): 625, 2021 05 25.
Artigo em Inglês | MEDLINE | ID: mdl-34035440

RESUMO

Type 1 inositol 1,4,5-trisphosphate receptor (IP3R1) is the predominant Ca2+-release channel in neurons. IP3R1 mediates Ca2+ release from the endoplasmic reticulum into the cytosol and thereby is involved in many physiological processes. Here, we present the cryo-EM structures of full-length rat IP3R1 reconstituted in lipid nanodisc and detergent solubilized in the presence of phosphatidylcholine determined in ligand-free, closed states by single-particle electron cryo-microscopy. Notably, both structures exhibit the well-established IP3R1 protein fold and reveal a nearly complete representation of lipids with similar locations of ordered lipids bound to the transmembrane domains. The lipid-bound structures show improved features that enabled us to unambiguously build atomic models of IP3R1 including two membrane associated helices that were not previously resolved in the TM region. Our findings suggest conserved locations of protein-bound lipids among homotetrameric ion channels that are critical for their structural and functional integrity despite the diversity of structural mechanisms for their gating.


Assuntos
Receptores de Inositol 1,4,5-Trifosfato/ultraestrutura , Bicamadas Lipídicas/química , Animais , Canais de Cálcio/metabolismo , Canais de Cálcio/ultraestrutura , Microscopia Crioeletrônica/métodos , Receptores de Inositol 1,4,5-Trifosfato/metabolismo , Bicamadas Lipídicas/metabolismo , Fosfatidilcolinas/química , Conformação Proteica , Domínios Proteicos , Estrutura Secundária de Proteína , Ratos
11.
Artigo em Inglês | MEDLINE | ID: mdl-31501195

RESUMO

The pro- and antiapoptotic proteins belonging to the B-cell lymphoma-2 (Bcl-2) family exert a critical control over cell-death processes by enabling or counteracting mitochondrial outer membrane permeabilization. Beyond this mitochondrial function, several Bcl-2 family members have emerged as critical modulators of intracellular Ca2+ homeostasis and dynamics, showing proapoptotic and antiapoptotic functions. Bcl-2 family proteins specifically target several intracellular Ca2+-transport systems, including organellar Ca2+ channels: inositol 1,4,5-trisphosphate receptors (IP3Rs) and ryanodine receptors (RyRs), Ca2+-release channels mediating Ca2+ flux from the endoplasmic reticulum, as well as voltage-dependent anion channels (VDACs), which mediate Ca2+ flux across the mitochondrial outer membrane into the mitochondria. Although the formation of protein complexes between Bcl-2 proteins and these channels has been extensively studied, a major advance during recent years has been elucidating the complex interaction of Bcl-2 proteins with IP3Rs. Distinct interaction sites for different Bcl-2 family members were identified in the primary structure of IP3Rs. The unique molecular profiles of these Bcl-2 proteins may account for their distinct functional outcomes when bound to IP3Rs. Furthermore, Bcl-2 inhibitors used in cancer therapy may affect IP3R function as part of their proapoptotic effect and/or as an adverse effect in healthy cells.


Assuntos
Cálcio/metabolismo , Receptores de Inositol 1,4,5-Trifosfato/metabolismo , Proteínas Proto-Oncogênicas c-bcl-2/metabolismo , Animais , Apoptose , Retículo Endoplasmático/metabolismo , Fibroblastos/metabolismo , Homeostase , Humanos , Camundongos , Mitocôndrias/metabolismo , Proteína de Sequência 1 de Leucemia de Células Mieloides/metabolismo , Domínios Proteicos , Canal de Ânion 1 Dependente de Voltagem/metabolismo , Proteína bcl-X/metabolismo
12.
Cell Res ; 28(12): 1158-1170, 2018 12.
Artigo em Inglês | MEDLINE | ID: mdl-30470765

RESUMO

Inositol-1,4,5-trisphosphate receptors (InsP3Rs) are cation channels that mobilize Ca2+ from intracellular stores in response to a wide range of cellular stimuli. The paradigm of InsP3R activation is the coupled interplay between binding of InsP3 and Ca2+ that switches the ion conduction pathway between closed and open states to enable the passage of Ca2+ through the channel. However, the molecular mechanism of how the receptor senses and decodes ligand-binding signals into gating motion remains unknown. Here, we present the electron cryo-microscopy structure of InsP3R1 from rat cerebellum determined to 4.1 Å resolution in the presence of activating concentrations of Ca2+ and adenophostin A (AdA), a structural mimetic of InsP3 and the most potent known agonist of the channel. Comparison with the 3.9 Å-resolution structure of InsP3R1 in the Apo-state, also reported herein, reveals the binding arrangement of AdA in the tetrameric channel assembly and striking ligand-induced conformational rearrangements within cytoplasmic domains coupled to the dilation of a hydrophobic constriction at the gate. Together, our results provide critical insights into the mechanistic principles by which ligand-binding allosterically gates InsP3R channel.


Assuntos
Sinalização do Cálcio , Cálcio/metabolismo , Cerebelo/metabolismo , Receptores de Inositol 1,4,5-Trifosfato/química , Ativação do Canal Iônico , Conformação Proteica , Adenosina/análogos & derivados , Adenosina/química , Regulação Alostérica , Animais , Microscopia Crioeletrônica/métodos , Receptores de Inositol 1,4,5-Trifosfato/agonistas , Ligantes , Modelos Moleculares , Ratos
14.
Curr Opin Struct Biol ; 46: 38-47, 2017 10.
Artigo em Inglês | MEDLINE | ID: mdl-28618351

RESUMO

Inositol 1,4,5-trisphosphate receptors (IP3Rs) are ubiquitously expressed intracellular Ca2+ channels and the major mediators of cellular Ca2+ signals generated by the release of Ca2+ ions from intracellular stores in response to a variety of extracellular stimuli. Despite established physiological significance and proven involvements of IP3R channels in many human diseases, detailed structural basis for signal detection by these ion channels and their gating remain obscure. Recently, single particle electron cryomicroscopy (cryo-EM) has yielded a long-awaited near-atomic resolution structure of the entire full-length type 1 IP3R. This structure provided exciting mechanistic insights into the molecular assembly of IP3R, revealing the pronounced structural conservation of Ca2+ release channels and raising many fundamental and controversial questions on their activation and gating. Here we summarize the major technological advances that propelled our cryo-EM analysis of IP3R to near-atomic resolution and discuss what the future holds for structural biology of Ca2+ release channels.


Assuntos
Microscopia Crioeletrônica/métodos , Receptores de Inositol 1,4,5-Trifosfato/química , Sequência de Aminoácidos , Animais , Humanos , Receptores de Inositol 1,4,5-Trifosfato/metabolismo , Domínios Proteicos , Razão Sinal-Ruído
15.
Eur J Transl Myol ; 25(1): 4803, 2015 Jan 07.
Artigo em Inglês | MEDLINE | ID: mdl-26913144

RESUMO

Ryanodine receptors (RyRs) are tetrameric ligand-gated Ca(2+) release channels that are responsible for the increase of cytosolic Ca(2+) concentration leading to muscle contraction. Our current understanding of RyR channel gating and regulation is greatly limited due to the lack of a high-resolution structure of the channel protein. The enormous size and unwieldy shape of Ca(2+) release channels make X-ray or NMR methods difficult to apply for high-resolution structural analysis of the full-length functional channel. Single-particle electron cryo-microscopy (cryo-EM) is one of the only effective techniques for the study of such a large integral membrane protein and its molecular interactions. Despite recent developments in cryo-EM technologies and break-through single-particle cryo-EM studies of ion channels, cryospecimen preparation, particularly the presence of detergent in the buffer, remains the main impediment to obtaining atomic-resolution structures of ion channels and a multitude of other integral membrane protein complexes. In this review we will discuss properties of several detergents that have been successfully utilized in cryo-EM studies of ion channels and the emergence of the detergent alternative amphipol to stabilize ion channels for structure-function characterization. Future structural studies of challenging specimen like ion channels are likely to be facilitated by cryo-EM amenable detergents or alternative surfactants.

16.
Eur J Transl Myol ; 25(1): 35-48, 2015.
Artigo em Inglês | MEDLINE | ID: mdl-25844145

RESUMO

Ryanodine receptors (RyRs) are tetrameric ligand-gated Ca2+ release channels that are responsible for the increase of cytosolic Ca2+ concentration leading to muscle contraction. Our current understanding of RyR channel gating and regulation is greatly limited due to the lack of a high-resolution structure of the channel protein. The enormous size and unwieldy shape of Ca2+ release channels make X-ray or NMR methods difficult to apply for high-resolution structural analysis of the full-length functional channel. Single-particle electron cryo-microscopy (cryo-EM) is one of the only effective techniques for the study of such a large integral membrane protein and its molecular interactions. Despite recent developments in cryo-EM technologies and break-through single-particle cryo-EM studies of ion channels, cryospecimen preparation, particularly the presence of detergent in the buffer, remains the main impediment to obtaining atomic-resolution structures of ion channels and a multitude of other integral membrane protein complexes. In this review we will discuss properties of several detergents that have been successfully utilized in cryo-EM studies of ion channels and the emergence of the detergent alternative amphipol to stabilize ion channels for structure-function characterization. Future structural studies of challenging specimen like ion channels are likely to be facilitated by cryo-EM amenable detergents or alternative surfactants.

17.
Structure ; 20(3): 450-63, 2012 Mar 07.
Artigo em Inglês | MEDLINE | ID: mdl-22405004

RESUMO

A significant number of macromolecular structures solved by electron cryo-microscopy and X-ray crystallography obtain resolutions of 3.5-6Å, at which direct atomistic interpretation is difficult. To address this, we developed pathwalking, a semi-automated protocol to enumerate reasonable Cα models from near-atomic resolution density maps without a structural template or sequence-structure correspondence. Pathwalking uses an approach derived from the Traveling Salesman Problem to rapidly generate an ensemble of initial models for individual proteins, which can later be optimized to produce full atomic models. Pathwalking can also be used to validate and identify potential structural ambiguities in models generated from near-atomic resolution density maps. In this work, examples from the EMDB and PDB are used to assess the broad applicability and accuracy of our method. With the growing number of near-atomic resolution density maps from cryo-EM and X-ray crystallography, pathwalking can become an important tool in modeling protein structures.


Assuntos
Algoritmos , Substâncias Macromoleculares/química , Modelos Moleculares , Biologia Molecular/métodos , Software , Microscopia Crioeletrônica/métodos , Cristalografia por Raios X/métodos , Dobramento de Proteína
18.
PLoS One ; 7(11): e48725, 2012.
Artigo em Inglês | MEDLINE | ID: mdl-23144945

RESUMO

ATP is an important modulator of gating in type 1 ryanodine receptor (RyR1), also known as a Ca²âº release channel in skeletal muscle cells. The activating effect of ATP on this channel is achieved by directly binding to one or more sites on the RyR1 protein. However, the number and location of these sites have yet to be determined. To identify the ATP-binding regions within RyR1 we used 2N3ATP-2',3'-Biotin-LC-Hydrazone (BioATP-HDZ), a photo-reactive ATP analog to covalently label the channel. We found that BioATP-HDZ binds RyR1 specifically with an IC50 = 0.6±0.2 mM, comparable with the reported EC50 for activation of RyR1 with ATP. Controlled proteolysis of labeled RyR1 followed by sequence analysis revealed three fragments with apparent molecular masses of 95, 45 and 70 kDa that were crosslinked by BioATP-HDZ and identified as RyR1 sequences. Our analysis identified four glycine-rich consensus motifs that can potentially constitute ATP-binding sites and are located within the N-terminal 95-kDa fragment. These putative nucleotide-binding sequences include amino acids 699-704, 701-706, 1081-1084 and 1195-1200, which are conserved among the three RyR isoforms. Located next to the N-terminal disease hotspot region in RyR1, these sequences may communicate the effects of ATP-binding to channel function by tuning conformational motions within the neighboring cytoplasmic regulatory domains. Two other labeled fragments lack ATP-binding consensus motifs and may form non-canonical ATP-binding sites. Based on domain topology in the 3D structure of RyR1 it is also conceivable that the identified ATP-binding regions, despite their wide separation in the primary sequence, may actually constitute the same non-contiguous ATP-binding pocket within the channel tetramer.


Assuntos
Trifosfato de Adenosina/metabolismo , Canal de Liberação de Cálcio do Receptor de Rianodina/química , Trifosfato de Adenosina/análogos & derivados , Trifosfato de Adenosina/análise , Trifosfato de Adenosina/química , Motivos de Aminoácidos , Sequência de Aminoácidos , Animais , Azidas/análise , Azidas/química , Sítios de Ligação , Sequência Consenso , Sequência Conservada , Hidrazonas/análise , Hidrazonas/química , Dados de Sequência Molecular , Isoformas de Proteínas/química , Isoformas de Proteínas/metabolismo , Isoformas de Proteínas/fisiologia , Estrutura Terciária de Proteína , Proteólise , Coelhos , Canal de Liberação de Cálcio do Receptor de Rianodina/metabolismo , Canal de Liberação de Cálcio do Receptor de Rianodina/fisiologia , Alinhamento de Sequência
19.
Biopolymers ; 97(9): 655-68, 2012 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-22696403

RESUMO

The complex interplay of proteins and other molecules, often in the form of large transitory assemblies, are critical to cellular function. Today, X-ray crystallography and electron cryo-microscopy (cryo-EM) are routinely used to image these macromolecular complexes, though often at limited resolutions. Despite the rapidly growing number of macromolecular structures, few tools exist for modeling and annotating structures in the range of 3-10 Å resolution. To address this need, we have developed a number of utilities specifically targeting subnanometer resolution density maps. As part of the 2010 Cryo-EM Modeling Challenge, we demonstrated two of our latest de novo modeling tools, Pathwalking and Gorgon, as well as a tool for secondary structure identification (SSEHunter) and a new rigid-body/flexible fitting tool in Gorgon. In total, we submitted 30 structural models from ten different subnanometer resolution data sets in four of the six challenge categories. Each of our utlities produced accurate structural models and annotations across the various density maps. In the end, the utilities that we present here offer users a robust toolkit for analyzing and modeling protein structure in macromolecular assemblies at non-atomic resolutions.


Assuntos
Microscopia Crioeletrônica/métodos , Modelos Moleculares , Proteínas/química , Nanotecnologia , Estrutura Secundária de Proteína
20.
Methods Enzymol ; 483: 1-29, 2010.
Artigo em Inglês | MEDLINE | ID: mdl-20888467

RESUMO

Today, electron cryomicroscopy (cryo-EM) can routinely achieve subnanometer resolutions of complex macromolecular assemblies. From a density map, one can extract key structural and functional information using a variety of computational analysis tools. At subnanometer resolution, these tools make it possible to isolate individual subunits, identify secondary structures, and accurately fit atomic models. With several cryo-EM studies achieving resolutions beyond 5Å, computational modeling and feature recognition tools have been employed to construct backbone and atomic models of the protein components directly from a density map. In this chapter, we describe several common classes of computational tools that can be used to analyze and model subnanometer resolution reconstructions from cryo-EM. A general protocol for analyzing subnanometer resolution density maps is presented along with a full description of steps used in analyzing the 4.3Å resolution structure of Mm-cpn.


Assuntos
Microscopia Crioeletrônica/métodos , Simulação por Computador , Chaperoninas do Grupo II/química , Processamento de Imagem Assistida por Computador , Modelos Moleculares , Conformação Proteica , Estrutura Secundária de Proteína
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA