RESUMO
Previous genome-wide association studies (GWASs) of stroke - the second leading cause of death worldwide - were conducted predominantly in populations of European ancestry1,2. Here, in cross-ancestry GWAS meta-analyses of 110,182 patients who have had a stroke (five ancestries, 33% non-European) and 1,503,898 control individuals, we identify association signals for stroke and its subtypes at 89 (61 new) independent loci: 60 in primary inverse-variance-weighted analyses and 29 in secondary meta-regression and multitrait analyses. On the basis of internal cross-ancestry validation and an independent follow-up in 89,084 additional cases of stroke (30% non-European) and 1,013,843 control individuals, 87% of the primary stroke risk loci and 60% of the secondary stroke risk loci were replicated (P < 0.05). Effect sizes were highly correlated across ancestries. Cross-ancestry fine-mapping, in silico mutagenesis analysis3, and transcriptome-wide and proteome-wide association analyses revealed putative causal genes (such as SH3PXD2A and FURIN) and variants (such as at GRK5 and NOS3). Using a three-pronged approach4, we provide genetic evidence for putative drug effects, highlighting F11, KLKB1, PROC, GP1BA, LAMC2 and VCAM1 as possible targets, with drugs already under investigation for stroke for F11 and PROC. A polygenic score integrating cross-ancestry and ancestry-specific stroke GWASs with vascular-risk factor GWASs (integrative polygenic scores) strongly predicted ischaemic stroke in populations of European, East Asian and African ancestry5. Stroke genetic risk scores were predictive of ischaemic stroke independent of clinical risk factors in 52,600 clinical-trial participants with cardiometabolic disease. Our results provide insights to inform biology, reveal potential drug targets and derive genetic risk prediction tools across ancestries.
Assuntos
Descoberta de Drogas , Predisposição Genética para Doença , AVC Isquêmico , Humanos , Isquemia Encefálica/genética , Predisposição Genética para Doença/genética , Estudo de Associação Genômica Ampla , AVC Isquêmico/genética , Terapia de Alvo Molecular , Herança Multifatorial , Europa (Continente)/etnologia , Ásia Oriental/etnologia , África/etnologiaRESUMO
BACKGROUND: In a genome-wide association study of intracranial aneurysms (IA), enrichment was found between genes associated with IA and genes encoding targets of effective anti-epileptic drugs. Our aim was to assess if this pleiotropy is driven by shared disease mechanisms that could potentially highlight a treatment strategy for IA. METHODS: Using 2-sample inverse-variance weighted Mendelian randomization and genetic colocalization analyses we assessed: (1) if epilepsy liability in general affects IA risk, and (2) whether changes in gene- and protein-expression levels of anti-epileptic drug targets in blood and arterial tissue may causally affect IA risk. RESULTS: We found no overall effect of epilepsy liability on IA. Expression of 21 genes and 13 proteins corresponding to anti-epileptic drug targets supported a causal effect (P<0.05) on IA risk. Of those genes and proteins, genetic variants affecting CNNM2 levels showed strong evidence for colocalization with IA risk (posterior probability>70%). Higher CNNM2 levels in arterial tissue were associated with increased IA risk (odds ratio, 3.02; [95% CI, 2.32-3.94]; P=3.39×10-16). CNNM2 expression was best proxied by rs11191580. The magnitude of the effect of this variant was greater than would be expected if systemic blood pressure was the sole IA-causing mechanism in this locus. CONCLUSIONS: CNNM2 is a driver of the pleiotropy between IA and anti-epileptic drug targets. Administration of the anti-epileptic drugs phenytoin, valproic acid, or carbamazepine may be expected to decrease CNNM2 levels and therefore subsequently decrease IA risk. CNNM2 is therefore an important target to investigate further for its role in the pathogenesis of IA.
Assuntos
Epilepsia , Aneurisma Intracraniano , Humanos , Aneurisma Intracraniano/tratamento farmacológico , Aneurisma Intracraniano/genética , Estudo de Associação Genômica Ampla , Análise da Randomização Mendeliana , Predisposição Genética para Doença/genética , Epilepsia/tratamento farmacológico , Epilepsia/genética , Polimorfismo de Nucleotídeo Único/genética , Fatores de RiscoRESUMO
BACKGROUND: Recently, common genetic risk factors for intracranial aneurysm (IA) and aneurysmal subarachnoid hemorrhage (ASAH) were found to explain a large amount of disease heritability and therefore have potential to be used for genetic risk prediction. We constructed a genetic risk score to (1) predict ASAH incidence and IA presence (combined set of unruptured IA and ASAH) and (2) assess its association with patient characteristics. METHODS: A genetic risk score incorporating genetic association data for IA and 17 traits related to IA (so-called metaGRS) was created using 1161 IA cases and 407 392 controls from the UK Biobank population study. The metaGRS was validated in combination with risk factors blood pressure, sex, and smoking in 828 IA cases and 68 568 controls from the Nordic HUNT population study. Furthermore, we assessed association between the metaGRS and patient characteristics in a cohort of 5560 IA patients. RESULTS: Per SD increase of metaGRS, the hazard ratio for ASAH incidence was 1.34 (95% CI, 1.20-1.51) and the odds ratio for IA presence 1.09 (95% CI, 1.01-1.18). Upon including the metaGRS on top of clinical risk factors, the concordance index to predict ASAH hazard increased from 0.63 (95% CI, 0.59-0.67) to 0.65 (95% CI, 0.62-0.69), while prediction of IA presence did not improve. The metaGRS was statistically significantly associated with age at ASAH (ß=-4.82×10-3 per year [95% CI, -6.49×10-3 to -3.14×10-3]; P=1.82×10-8), and location of IA at the internal carotid artery (odds ratio=0.92 [95% CI, 0.86-0.98]; P=0.0041). CONCLUSIONS: The metaGRS was predictive of ASAH incidence, although with limited added value over clinical risk factors. The metaGRS was not predictive of IA presence. Therefore, we do not recommend using this metaGRS in daily clinical care. Genetic risk does partly explain the clinical heterogeneity of IA warranting prioritization of clinical heterogeneity in future genetic prediction studies of IA and ASAH.
Assuntos
Aneurisma Intracraniano , Hemorragia Subaracnóidea , Humanos , Hemorragia Subaracnóidea/epidemiologia , Hemorragia Subaracnóidea/genética , Hemorragia Subaracnóidea/complicações , Aneurisma Intracraniano/epidemiologia , Aneurisma Intracraniano/genética , Aneurisma Intracraniano/complicações , Fatores de Risco , Fumar/epidemiologia , Fumar/efeitos adversos , IncidênciaRESUMO
BACKGROUND AND PURPOSE: Nuclear factor erythroid 2-related factor 2 (NRF2; encoded by the NFE2L2 gene) has been implicated in outcome following aneurysmal subarachnoid haemorrhage (aSAH) through its activity as a regulator of inflammation, oxidative injury and blood breakdown product clearance. The aim of this study was to identify whether genetic variation in NFE2L2 is associated with clinical outcome following aSAH. METHODS: Ten tagging single nucleotide polymorphisms (SNPs) in NFE2L2 were genotyped and tested for association with dichotomized clinical outcome, assessed by the modified Rankin scale, in both a discovery and a validation cohort. In silico functional analysis was performed using a range of bioinformatic tools. RESULTS: One SNP, rs10183914, was significantly associated with outcome following aSAH in both the discovery (n = 1007) and validation cohorts (n = 466). The risk of poor outcome was estimated to be 1.33-fold (95% confidence interval 1.12-1.58) higher in individuals with the T allele of rs10183914 (pmeta-analysis = 0.001). In silico functional analysis identified rs10183914 as a potentially regulatory variant with effects on transcription factor binding in addition to alternative splicing with the T allele, associated with a significant reduction in the NFE2L2 intron excision ratio (psQTL = 1.3 × 10-7 ). CONCLUSIONS: The NFE2L2 SNP, rs10183914, is significantly associated with outcome following aSAH. This is consistent with a clinically relevant pathophysiological role for oxidative and inflammatory brain injury due to blood and its breakdown products in aSAH. Furthermore, our findings support NRF2 as a potential therapeutic target following aSAH and other forms of intracranial haemorrhage.
Assuntos
Hemorragia Subaracnóidea , Humanos , Hemorragia Subaracnóidea/genética , Fator 2 Relacionado a NF-E2/genética , Polimorfismo de Nucleotídeo Único/genética , Genótipo , AlelosRESUMO
BACKGROUND: The risk of aneurysmal subarachnoid hemorrhage (aSAH) is increased in postmenopausal women compared with men of similar age, suggesting a role for sex hormones. We aimed to explore whether sex hormones, and age at menarche/menopause have a causal effect on aSAH risk by conducting a 2-sample MR study (Mendelian randomization). METHODS: We obtained sex-specific genetic instruments for serum estradiol, bioavailable testosterone (BioT), SHBG (sex hormone-binding globulin), and age at menarche/menopause from genome-wide association studies. The associated sex-specific aSAH risk was estimated with inverse-variance weighted MR analyses with various statistical sensitivity analyses. Multivariable and cluster MR analyses were performed for BioT and SHBG to account for a genetic and phenotypic correlation between the 2 exposures. The clusters represented (1) single-nucleotide polymorphisms primarily increasing SHBG, with secondary decreasing effects on BioT, and (2) single-nucleotide polymorphisms affecting BioT without affecting SHBG. RESULTS: Univariable MR analyses showed an 18% increased aSAH risk among women per 1-SD increase in genetically determined SHBG levels (odds ratio, 1.18 [95% CI, 1.05-1.34]; P=0.007). Suggestive evidence was identified for a 27% decreased risk of aSAH among women per 1-SD increase in BioT (odds ratio, 0.73 [95% CI, 0.55-0.95]; P=0.02). The latter association disappeared in cluster analysis when only using SHBG-independent variants. MR analyses with variants from the cluster with primary SHBG effects and secondary (opposite) BioT-effects yielded a statistically significant association (odds ratio, 1.21 [95% CI, 1.05-1.40]; P=0.008). No other causal associations were identified. CONCLUSIONS: Genetic predisposition to elevated serum levels of SHBG, with secondary lower serum BioT levels, is associated with an increased aSAH risk among women, suggesting that SHBG and BioT causally elevate aSAH risk. Further studies are required to elucidate the underlying mechanisms and their potential as an interventional target to lower aSAH incidence.
Assuntos
Análise da Randomização Mendeliana , Hemorragia Subaracnóidea , Feminino , Humanos , Masculino , Estudo de Associação Genômica Ampla , Hormônios Esteroides Gonadais , Fatores de Risco , Hemorragia Subaracnóidea/epidemiologia , Hemorragia Subaracnóidea/genética , TestosteronaRESUMO
Rupture of an intracranial aneurysm leads to aneurysmal subarachnoid hemorrhage, a severe type of stroke which is, in part, driven by genetic variation. In the past 10 years, genetic studies of IA have boosted the number of known genetic risk factors and improved our understanding of the disease. In this review, we provide an overview of the current status of the field and highlight the latest findings of family based, sequencing, and genome-wide association studies. We further describe opportunities of genetic analyses for understanding, prevention, and treatment of the disease.
Assuntos
Aneurisma Roto/genética , Predisposição Genética para Doença/genética , Aneurisma Intracraniano/genética , Hemorragia Subaracnóidea/genética , Estudo de Associação Genômica Ampla/métodos , Humanos , Fatores de RiscoRESUMO
[Figure: see text].
Assuntos
Aneurisma Intracraniano/epidemiologia , Aneurisma Intracraniano/genética , Hemorragia Subaracnóidea/epidemiologia , Hemorragia Subaracnóidea/genética , Aneurisma Roto/epidemiologia , Aneurisma Roto/genética , Etnicidade/genética , Humanos , Países Baixos , Reino UnidoRESUMO
Background and Purpose- Finding adequate control tissue for intracranial aneurysm (IA) pathophysiological studies, including gene expression studies, can be challenging. We compared gene expression profiles of superficial temporal, cortical, and circle of Willis (CoW) arteries and IA in search of the most optimal control tissue for future experiments. Methods- We compared RNA-sequencing data of IA samples and of superficial temporal, cortical, and CoW artery samples using Pearson correlation, Euclidean distance, and principal component analysis. We used the Mann-Whitney U test for comparison of Pearson correlation coefficients and Euclidean distances, to assess which control tissue is most similar to IA in terms of gene expression. Other unrelated tissues were used as negative controls. Results- The cortical and the CoW arteries were more similar to IA in terms of gene expression than the superficial temporal artery. This was based on Pearson correlation (+0.023 [90% CI, 0.017/0.029; P=1.9E-09] for the cortical artery and +0.034 [90% CI, 0.028/0.040; P=6.0E-15] for the CoW artery compared with the superficial temporal artery), Euclidean distance (-25.71 [90% CI, -31.54/-20.02; P=1.9E-11] for the cortical artery and -38.09 [90% CI, -44.08/-32.19; P<2.2E-16] for the CoW artery compared with the superficial temporal artery) and principal component analysis. In all analyses, the unrelated tissues formed separate groups compared with IA and the 3 control arteries. Conclusions- The cortical arteries and the CoW arteries are better controls for gene expression studies on IA than the superficial temporal artery. This probably relates to differences in anatomy of these tissues, such as the presence of an external elastic lamina in the extracranial vasculature and absence in the intracranial vasculature, because IAs, cortical arteries, and CoW arteries are all intracranial while the superficial temporal artery is extracranial. Since CoW arteries can only be obtained postmortem, cortical arteries are preferred over CoW arteries.
Assuntos
Artérias Cerebrais , Grupos Controle , Perfilação da Expressão Gênica/métodos , Aneurisma Intracraniano/genética , HumanosRESUMO
INTRODUCTION: There is no non-invasive treatment to prevent aneurysmal subarachnoid hemorrhage (ASAH) caused by intracranial aneurysm (IA) rupture. We aimed to identify drug classes that may affect liability to IA using a genetic approach. PATIENTS AND METHODS: Using genome-wide association summary statistics we calculated genetic correlation between unruptured IA (N = 2140 cases), ASAH (N = 5140) or the combined group, and liability to drug usage from 23 drug classes (N up to 320,000) independent of the risk factor high blood pressure. Next, we evaluated the causality and therapeutic potential of correlated drug classes using three different Mendelian randomization frameworks. RESULTS: Correlations with IA were found for antidepressants, paracetamol, acetylsalicylic acid, opioids, beta-blockers, and peptic ulcer and gastro-esophageal reflux disease drugs. MR showed no evidence that genetically predicted usage of these drug classes caused IA. Genetically predicted high responders to antidepressant drugs were at higher risk of IA (odds ratio [OR] = 1.61, 95% confidence interval (CI) = 1.09-2.39, p = 0.018) and ASAH (OR = 1.68, 95% CI = 1.07-2.65, p = 0.024) if they used antidepressant drugs. This effect was absent in non-users. For beta-blockers, additional analyses showed that this effect was not independent of blood pressure after all. A complex and likely pleiotropic relationship was found between genetic liability to chronic multisite pain, pain medication usage (paracetamol, acetylsalicylic acid, and opioids), and IA. CONCLUSIONS: We did not find drugs decreasing liability to IA and ASAH but found that antidepressant drugs may increase liability. We observed pleiotropic relationships between IA and other drug classes and indications. Our results improve understanding of pathogenic mechanisms underlying IA.
Assuntos
Estudo de Associação Genômica Ampla , Aneurisma Intracraniano , Análise da Randomização Mendeliana , Humanos , Aneurisma Intracraniano/genética , Aneurisma Intracraniano/epidemiologia , Antidepressivos/efeitos adversos , Antidepressivos/uso terapêutico , Hemorragia Subaracnóidea/genética , Hemorragia Subaracnóidea/epidemiologia , Fatores de Risco , Antagonistas Adrenérgicos beta/uso terapêutico , Antagonistas Adrenérgicos beta/efeitos adversos , Aspirina/efeitos adversos , Aspirina/uso terapêutico , Acetaminofen/efeitos adversos , Acetaminofen/uso terapêutico , Analgésicos Opioides/efeitos adversos , Analgésicos Opioides/uso terapêutico , Aneurisma Roto/genética , Aneurisma Roto/epidemiologiaRESUMO
BACKGROUND: The prevalence of intracranial aneurysms (IAs) and incidence of aneurysmal subarachnoid haemorrhage (aSAH) is higher in women than in men. Although several cardiometabolic and lifestyle factors have been related to the risk of IAs or aSAH, it is unclear whether there are sex differences in causal relationships of these risk factors. AIMS: The aim of this study was to determine sex differences in causal relationships between cardiometabolic and lifestyle factors and risk of aSAH and IA. METHODS: We conducted a sex-specific two-sample Mendelian randomization study using summary-level data from genome-wide association studies. We analysed low-density lipoprotein cholesterol, high-density lipoprotein cholesterol [HDL-C], triglycerides, non-HDL-C, total cholesterol, fasting glucose, systolic and diastolic blood pressure, smoking initiation, and alcohol use as exposures, and aSAH and IA (i.e. aSAH and unruptured IA combined) as outcomes. RESULTS: We found statistically significant sex differences in the relationship between genetically proxied non-HDL-C and aSAH risk, with odds ratios (ORs) of 0.72 (95% confidence interval 0.58, 0.88) in women and 1.01 (0.77, 1.31) in men (p-value for sex difference 0.044). Moreover, genetic liability to smoking initiation was related to a statistically significantly higher risk of aSAH in men compared to women (p-value for sex difference 0.007) with ORs of 3.81 (1.93, 7.52) and 1.12 (0.63, 1.99), respectively, and to a statistically significantly higher IA risk in men compared to women (p-value for sex difference 0.036) with ORs of 3.58 (2.04, 6.27) and 1.61 (0.98, 2.64), respectively. In addition, higher genetically proxied systolic and diastolic blood pressure were related to a higher risk of aSAH and IA in both women and men. CONCLUSIONS: Higher genetically proxied non-HDL-C was related to a lower risk of aSAH in women compared to men. Moreover, genetic liability to smoking initiation was associated with a higher risk for aSAH and IA in men compared to women. These findings may help improve understanding of sex differences in the development of aSAH and IA.
RESUMO
Background: The prevalence of intracranial aneurysms (IAs) and incidence of aneurysmal subarachnoid haemorrhage (aSAH) is higher in women than in men. Although several cardiometabolic and lifestyle factors have been related to the risk of IAs or aSAH, it is unclear whether there are sex differences in causal relationships of these risk factors. Aims: The aim of this study was to determine sex differences in causal relationships between cardiometabolic and lifestyle factors and risk of aSAH and IA. Methods: We conducted a sex-specific two-sample Mendelian randomisation study using summary-level data from genome-wide association studies. We analysed low-density lipoprotein cholesterol, high-density lipoprotein cholesterol [HDL-C], triglycerides, non-HDL-C, total cholesterol, fasting glucose, systolic and diastolic blood pressure, smoking initiation, and alcohol use as exposures, and aSAH and IA (i.e., aSAH and unruptured IA combined) as outcomes. Results: We found statistically significant sex differences in the relationship between genetically proxied non-HDL-C and aSAH risk, with odds ratios (ORs) of 0.72 (95% confidence interval 0.58, 0.88) in women and 1.01 (0.77, 1.31) in men (P-value for sex difference 0.044). Moreover, genetic liability to smoking initiation was related to a statistically significantly higher risk of aSAH in men compared to women (P-value for sex difference 0.007) with ORs of 3.81 (1.93, 7.52) and 1.12 (0.63, 1.99), respectively, and to a statistically significantly higher IA risk in men compared to women (P-value for sex difference 0.036) with ORs of 3.58 (2.04, 6.27) and 1.61 (0.98, 2.64), respectively. In addition, higher genetically proxied systolic and diastolic blood pressure were related to a higher risk of aSAH and IA in both women and men. Conclusions: Higher genetically proxied non-HDL-C was related to a lower risk of aSAH in women compared to men. Moreover, genetic liability to smoking initiation was associated with a higher risk for aSAH and IA in men compared to women. These findings may help improve understanding of sex differences in the development of aSAH and IA.
Assuntos
Estudo de Associação Genômica Ampla , Aneurisma Intracraniano , Análise da Randomização Mendeliana , Hemorragia Subaracnóidea , Humanos , Hemorragia Subaracnóidea/epidemiologia , Hemorragia Subaracnóidea/genética , Hemorragia Subaracnóidea/sangue , Feminino , Masculino , Aneurisma Intracraniano/genética , Aneurisma Intracraniano/epidemiologia , Fatores Sexuais , Medição de Risco , Fatores de Risco , Incidência , Predisposição Genética para Doença , Disparidades nos Níveis de Saúde , PrevalênciaRESUMO
Identification of therapeutic targets from genome-wide association studies (GWAS) requires insights into downstream functional consequences. We harmonized 8,613 RNA-sequencing samples from 14 brain datasets to create the MetaBrain resource and performed cis- and trans-expression quantitative trait locus (eQTL) meta-analyses in multiple brain region- and ancestry-specific datasets (n ≤ 2,759). Many of the 16,169 cortex cis-eQTLs were tissue-dependent when compared with blood cis-eQTLs. We inferred brain cell types for 3,549 cis-eQTLs by interaction analysis. We prioritized 186 cis-eQTLs for 31 brain-related traits using Mendelian randomization and co-localization including 40 cis-eQTLs with an inferred cell type, such as a neuron-specific cis-eQTL (CYP24A1) for multiple sclerosis. We further describe 737 trans-eQTLs for 526 unique variants and 108 unique genes. We used brain-specific gene-co-regulation networks to link GWAS loci and prioritize additional genes for five central nervous system diseases. This study represents a valuable resource for post-GWAS research on central nervous system diseases.
Assuntos
Encefalopatias , Locos de Características Quantitativas , Humanos , Locos de Características Quantitativas/genética , Estudo de Associação Genômica Ampla , Redes Reguladoras de Genes/genética , Encéfalo , Fenótipo , Encefalopatias/genética , Polimorfismo de Nucleotídeo Único/genéticaRESUMO
Candidate gene studies have identified genetic variants associated with clinical outcomes following aneurysmal subarachnoid haemorrhage (aSAH), but no genome-wide association studies have been performed to date. Here we report the results of the discovery phase of a two-stage genome-wide meta-analysis of outcome after aSAH. We identified 157 independent loci harbouring 756 genetic variants associated with outcome after aSAH (p < 1 × 10-4), which require validation. A single variant (rs12949158), in SPNS2, achieved genome-wide significance (p = 4.29 × 10-8) implicating sphingosine-1-phosphate signalling in outcome after aSAH. A large multicentre international effort to recruit samples for validation is required and ongoing. Validation of these findings will provide significant insight into the pathophysiology of outcomes after aSAH with potential implications for treatment.
Assuntos
Hemorragia Subaracnóidea , Humanos , Hemorragia Subaracnóidea/complicações , Estudo de Associação Genômica Ampla , Estudos Longitudinais , Resultado do TratamentoRESUMO
Importance: Idiopathic multifocal choroiditis (MFC) is poorly understood, thereby hindering optimal treatment and monitoring of patients. Objective: To identify the genes and pathways associated with idiopathic MFC. Design, Setting, and Participants: This was a case-control genome-wide association study (GWAS) and protein study of blood plasma samples conducted from March 2006 to February 2022. This was a multicenter study involving 6 Dutch universities. Participants were grouped into 2 cohorts: cohort 1 consisted of Dutch patients with idiopathic MFC and controls, and cohort 2 consisted of patients with MFC and controls. Plasma samples from patients with idiopathic MFC who had not received treatment were subjected to targeted proteomics. Idiopathic MFC was diagnosed according to the Standardization of Uveitis Nomenclature (SUN) Working Group guidelines for punctate inner choroidopathy and multifocal choroiditis with panuveitis. Data were analyzed from July 2021 to October 2022. Main outcomes and measures: Genetic variants associated with idiopathic MFC and risk variants associated with plasma protein concentrations in patients. Results: This study included a total of 4437 participants in cohort 1 (170 [3.8%] Dutch patients with idiopathic MFC and 4267 [96.2%] controls; mean [SD] age, 55 [18] years; 2443 female [55%]) and 1344 participants in cohort 2 (52 [3.9%] patients with MFC and 1292 [96.1%] controls; 737 male [55%]). The primary GWAS association mapped to the CFH gene with genome-wide significance (lead variant the A allele of rs7535263; odds ratio [OR], 0.52; 95% CI, 0.41-0.64; P = 9.3 × 10-9). There was no genome-wide significant association with classical human leukocyte antigen (HLA) alleles (lead classical allele, HLA-A*31:01; P = .002). The association with rs7535263 showed consistent direction of effect in an independent cohort of 52 cases and 1292 control samples (combined meta-analysis OR, 0.58; 95% CI, 0.38-0.77; P = 3.0 × 10-8). In proteomic analysis of 87 patients, the risk allele G of rs7535263 in the CFH gene was strongly associated with increased plasma concentrations of factor H-related (FHR) proteins (eg, FHR-2, likelihood ratio test, adjusted P = 1.1 × 10-3) and proteins involved in platelet activation and the complement cascade. Conclusions and relevance: Results suggest that CFH gene variants increase systemic concentrations of key factors of the complement and coagulation cascades, thereby conferring susceptibility to idiopathic MFC. These findings suggest that the complement and coagulation pathways may be key targets for the treatment of idiopathic MFC.
Assuntos
Corioidite , Fator H do Complemento , Humanos , Masculino , Feminino , Pessoa de Meia-Idade , Fator H do Complemento/genética , Coroidite Multifocal , Estudo de Associação Genômica Ampla , Proteômica , Polimorfismo de Nucleotídeo Único , Corioidite/diagnóstico , Corioidite/genética , Proteínas/genéticaRESUMO
Rupture of an intracranial aneurysm (IA) leads to aneurysmal subarachnoid haemorrhage (ASAH), a severe type of stroke. Some rare variants that cause IA in families have been identified, but still, the majority of genetic causes, as well as the biological mechanisms of IA development and rupture, remain unknown. We aimed to identify rare, damaging variants for IA in three large Dutch families with multiple affected members with IA (N = 9, 11, and 6). By combining linkage analysis and genome sequencing (GS), we identified six rare and damaging variants for which all cases within one of the families were heterozygous. These variants were p.Tyr87Cys in SYCP1, p.Phe1077Leu in FMNL2, p.Thr754Lys in TBC1D2, p.Arg321His in ZNF782, p.Arg979Trp in CCDC180, and p.Val125Met in NCBP1. None of the variants showed association with IA status in a large cohort of 937 patients from the general IA patient population and 1046 controls. Gene expression in IA and cerebral artery tissue further prioritized FMNL2 and TBC1D2 as potential important players in IA pathophysiology. Further studies are needed to characterize the functional consequences of the identified variants and their role in the biological mechanisms of IA.
Assuntos
Aneurisma Intracraniano , Hemorragia Subaracnóidea , Mapeamento Cromossômico , Forminas , Ligação Genética , Predisposição Genética para Doença , Humanos , Aneurisma Intracraniano/epidemiologia , Aneurisma Intracraniano/genética , Hemorragia Subaracnóidea/epidemiologia , Hemorragia Subaracnóidea/genéticaRESUMO
Aneurysmal subarachnoid haemorrhage (aSAH) results in persistent clinical deficits which prevent survivors from returning to normal daily functioning. Only a small fraction of the variation in clinical outcome following aSAH is explained by known clinical, demographic and imaging variables; meaning additional unknown factors must play a key role in clinical outcome. There is a growing body of evidence that genetic variation is important in determining outcome following aSAH. Understanding genetic determinants of outcome will help to improve prognostic modelling, stratify patients in clinical trials and target novel strategies to treat this devastating disease. This protocol details a two-stage genome-wide association study to identify susceptibility loci for clinical outcome after aSAH using individual patient-level data from multiple international cohorts. Clinical outcome will be assessed using the modified Rankin Scale or Glasgow Outcome Scale at 1-24 months. The stage 1 discovery will involve meta-analysis of individual-level genotypes from different cohorts, controlling for key covariates. Based on statistical significance, supplemented by biological relevance, top single nucleotide polymorphisms will be selected for replication at stage 2. The study has national and local ethical approval. The results of this study will be rapidly communicated to clinicians, researchers and patients through open-access publication(s), presentation(s) at international conferences and via our patient and public network.
Assuntos
Hemorragia Subaracnóidea , Estudo de Associação Genômica Ampla , Genótipo , Humanos , Metanálise como Assunto , Polimorfismo de Nucleotídeo Único/genética , Prognóstico , Hemorragia Subaracnóidea/genéticaRESUMO
Intracranial aneurysms (IAs) are usually asymptomatic with a low risk of rupture, but consequences of aneurysmal subarachnoid hemorrhage (aSAH) are severe. Identifying IAs at risk of rupture has important clinical and socio-economic consequences. The goal of this study was to assess the effect of patient and IA characteristics on the likelihood of IA being diagnosed incidentally versus ruptured. Patients were recruited at 21 international centers. Seven phenotypic patient characteristics and three IA characteristics were recorded. The analyzed cohort included 7992 patients. Multivariate analysis demonstrated that: (1) IA location is the strongest factor associated with IA rupture status at diagnosis; (2) Risk factor awareness (hypertension, smoking) increases the likelihood of being diagnosed with unruptured IA; (3) Patients with ruptured IAs in high-risk locations tend to be older, and their IAs are smaller; (4) Smokers with ruptured IAs tend to be younger, and their IAs are larger; (5) Female patients with ruptured IAs tend to be older, and their IAs are smaller; (6) IA size and age at rupture correlate. The assessment of associations regarding patient and IA characteristics with IA rupture allows us to refine IA disease models and provide data to develop risk instruments for clinicians to support personalized decision-making.
RESUMO
Background The aim of this study was to assess the associations of modifiable lifestyle factors (smoking, coffee consumption, sleep, and physical activity) and cardiometabolic factors (body mass index, glycemic traits, type 2 diabetes, systolic and diastolic blood pressure, lipids, and inflammation and kidney function markers) with risks of any (ruptured or unruptured) intracranial aneurysm and aneurysmal subarachnoid hemorrhage using Mendelian randomization. Methods and Results Summary statistical data for the genetic associations with the modifiable risk factors and the outcomes were obtained from meta-analyses of genome-wide association studies. The inverse-variance weighted method was used as the main Mendelian randomization analysis, with additional sensitivity analyses conducted using methods more robust to horizontal pleiotropy. Genetic predisposition to smoking, insomnia, and higher blood pressure was associated with an increased risk of both intracranial aneurysm and aneurysmal subarachnoid hemorrhage. For intracranial aneurysm, the odds ratios were 3.20 (95% CI, 1.93-5.29) per SD increase in smoking index, 1.24 (95% CI, 1.10-1.40) per unit increase in log-odds of insomnia, and 2.92 (95% CI, 2.49-3.43) per 10 mm Hg increase in diastolic blood pressure. In addition, there was weak evidence for associations of genetically predicted decreased physical activity, higher triglyceride levels, higher body mass index, and lower low-density lipoprotein cholesterol levels with higher risk of intracranial aneurysm and aneurysmal subarachnoid hemorrhage, with 95% CI overlapping the null for at least 1 of the outcomes. All results were consistent in sensitivity analyses. Conclusions This Mendelian randomization study suggests that smoking, insomnia, and high blood pressure are major risk factors for intracranial aneurysm and aneurysmal subarachnoid hemorrhage.
Assuntos
Aneurisma Intracraniano , Hemorragia Subaracnóidea , Diabetes Mellitus Tipo 2 , Estudo de Associação Genômica Ampla , Humanos , Hipertensão , Aneurisma Intracraniano/epidemiologia , Aneurisma Intracraniano/genética , Análise da Randomização Mendeliana , Fatores de Risco , Distúrbios do Início e da Manutenção do Sono , Hemorragia Subaracnóidea/epidemiologia , Hemorragia Subaracnóidea/genéticaRESUMO
BACKGROUND: The genetic basis of lacunar stroke is poorly understood, with a single locus on 16q24 identified to date. We sought to identify novel associations and provide mechanistic insights into the disease. METHODS: We did a pooled analysis of data from newly recruited patients with an MRI-confirmed diagnosis of lacunar stroke and existing genome-wide association studies (GWAS). Patients were recruited from hospitals in the UK as part of the UK DNA Lacunar Stroke studies 1 and 2 and from collaborators within the International Stroke Genetics Consortium. Cases and controls were stratified by ancestry and two meta-analyses were done: a European ancestry analysis, and a transethnic analysis that included all ancestry groups. We also did a multi-trait analysis of GWAS, in a joint analysis with a study of cerebral white matter hyperintensities (an aetiologically related radiological trait), to find additional genetic associations. We did a transcriptome-wide association study (TWAS) to detect genes for which expression is associated with lacunar stroke; identified significantly enriched pathways using multi-marker analysis of genomic annotation; and evaluated cardiovascular risk factors causally associated with the disease using mendelian randomisation. FINDINGS: Our meta-analysis comprised studies from Europe, the USA, and Australia, including 7338 cases and 254 798 controls, of which 2987 cases (matched with 29 540 controls) were confirmed using MRI. Five loci (ICA1L-WDR12-CARF-NBEAL1, ULK4, SPI1-SLC39A13-PSMC3-RAPSN, ZCCHC14, ZBTB14-EPB41L3) were found to be associated with lacunar stroke in the European or transethnic meta-analyses. A further seven loci (SLC25A44-PMF1-BGLAP, LOX-ZNF474-LOC100505841, FOXF2-FOXQ1, VTA1-GPR126, SH3PXD2A, HTRA1-ARMS2, COL4A2) were found to be associated in the multi-trait analysis with cerebral white matter hyperintensities (n=42 310). Two of the identified loci contain genes (COL4A2 and HTRA1) that are involved in monogenic lacunar stroke. The TWAS identified associations between the expression of six genes (SCL25A44, ULK4, CARF, FAM117B, ICA1L, NBEAL1) and lacunar stroke. Pathway analyses implicated disruption of the extracellular matrix, phosphatidylinositol 5 phosphate binding, and roundabout binding (false discovery rate <0·05). Mendelian randomisation analyses identified positive associations of elevated blood pressure, history of smoking, and type 2 diabetes with lacunar stroke. INTERPRETATION: Lacunar stroke has a substantial heritable component, with 12 loci now identified that could represent future treatment targets. These loci provide insights into lacunar stroke pathogenesis, highlighting disruption of the vascular extracellular matrix (COL4A2, LOX, SH3PXD2A, GPR126, HTRA1), pericyte differentiation (FOXF2, GPR126), TGF-ß signalling (HTRA1), and myelination (ULK4, GPR126) in disease risk. FUNDING: British Heart Foundation.