Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros

Base de dados
Assunto principal
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
Chemistry ; 27(1): 218-221, 2021 Jan 04.
Artigo em Inglês | MEDLINE | ID: mdl-32902899

RESUMO

This work reports a dye-sensitized photoelectrochemical cell (DSPEC) that couples redox-mediated light-driven oxidative organic transformations to reductive hydrogen (H2 ) formation. The DSPEC photoanode consists of a mesoporous anatase TiO2 film on FTO (fluorine-doped tin oxide), sensitized with the thienopyrroledione-based dye AP11, while H2 was formed at a FTO-Pt cathode. Irradiation of the dye-sensitized photoanode transforms 2,2,6,6-tetramethylpiperidine 1-oxyl (TEMPO) to the oxidized TEMPO (TEMPO+ ), which acts as a chemical oxidant for the conversion of benzyl alcohol. The TEMPO0/+ couple, previously used as redox mediator in DSSC, mediates efficient electron transfer from the organic substrate to the photo-oxidized dye. A DSPEC photoreactor was designed that allows in situ monitoring the reaction progress by infrared spectroscopy and gas chromatography. Sustained light-driven oxidation of benzyl alcohol to benzaldehyde within the DSPEC photoreactor, using of TEMPO as mediator, demonstrated the efficiency of the device, with a photocurrent of 0.4 mA cm-2 , approaching quantitative Faradaic efficiency and exhibiting excellent device stability.

2.
Adv Sci (Weinh) ; 11(9): e2306032, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38110821

RESUMO

A supramolecular photovoltaic strategy is applied to enhance power conversion efficiencies (PCE) of photoelectrochemical devices by suppressing electron-hole recombination after photoinduced electron transfer (PET). Here, the author exploit supramolecular localization of the redox mediator-in close proximity to the dye-through a rotaxane topology, reducing electron-hole recombination in p-type dye-sensitized solar cells (p-DSSCs). Dye PRotaxane features 1,5-dioxynaphthalene recognition sites (DNP-arms) with a mechanically-interlocked macrocyclic redox mediator naphthalene diimide macrocycle (3-NDI-ring), stoppering synthetically via click chemistry. The control molecule PStopper has stoppered DNP-arms, preventing rotaxane formation with the 3-NDI-ring. Transient absorption and time-resolved fluorescence spectroscopy studies show ultrafast (211 ± 7 fs and 2.92 ± 0.05 ps) PET from the dye-moiety of PRotaxane to its mechanically interlocked 3-NDI-ring-acceptor, slowing down the electron-hole recombination on NiO surfaces compared to the analogue . p-DSSCs employing PRotaxane (PCE = 0.07%) demonstrate a 30% PCE increase compared to PStopper (PCE = 0.05%) devices, combining enhancements in both open-circuit voltages (VOC = 0.43 vs 0.36 V) and short-circuit photocurrent density (JSC = -0.39 vs -0.34 mA cm-2 ). Electrochemical impedance spectroscopy shows that PRotaxane devices exhibit hole lifetimes (τh ) approaching 1 s, a 16-fold improvement compared to traditional I- /I3 - -based systems (τh = 50 ms), demonstrating the benefits obtained upon nanoengineering of interfacial dye-regeneration at the photocathode.

3.
ChemSusChem ; 15(15): e202200594, 2022 Aug 05.
Artigo em Inglês | MEDLINE | ID: mdl-35638151

RESUMO

Dye-sensitized photoelectrochemical cells are promising devices in solar energy conversion. However, several limitations still have to be addressed, such as the major loss pathway through charge recombination at the dye-semiconductor interface. Charge separating dyes constructed as push-pull systems can increase the spatial separation of electron and hole, decreasing the recombination rate. Here, a family of dyes, consisting of polyphenylamine donors, fluorene bridges, and perylene monoimide acceptors, was investigated in silico using a combination of semi-empirical nuclear dynamics and a quantum propagation of photoexcited electron and hole. To optimize the charge separation, several molecular design strategies were investigated, including modifying the donor molecule, increasing the π-bridge length, and decoupling the molecular components through steric effects. The combination of a triphenylamine donor, using an extended 2-fluorene π-bridge, and decoupling the different components by steric hindrance from side groups resulted in a dye with significantly improved charge separation properties in comparison to the original supramolecular complex.


Assuntos
Energia Solar , Aminas/química , Corantes/química , Fluorenos , Luz Solar
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA