Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Mais filtros

Base de dados
Assunto principal
Tipo de documento
Assunto da revista
País de afiliação
Intervalo de ano de publicação
1.
Molecules ; 28(11)2023 May 25.
Artigo em Inglês | MEDLINE | ID: mdl-37298815

RESUMO

The aim of the study was to analyze the reversibility of the cycle of graphene oxide (GO), reduced GO, and GO obtained by consecutive reoxidation of reduced GO. Accordingly, GO was heated in three different atmospheres (oxidizing, inert, and reducing, i.e., air, nitrogen, and argon/hydrogen mixture, respectively) at 400 °C to obtain reduced GO with varying composition. The bare GO and the RGO samples were oxidized or reoxidized with HNO3. The thermal properties, composition, bonds, and structure of the samples were investigated with TG/DTA, EDX, Raman spectroscopy, and XRD. Their photocatalytic activity was tested by decomposing methyl orange dye under UV light irradiation.


Assuntos
Grafite , Oxirredução , Grafite/química , Raios Ultravioleta , Análise Espectral Raman
2.
Nanomaterials (Basel) ; 10(11)2020 Nov 22.
Artigo em Inglês | MEDLINE | ID: mdl-33266500

RESUMO

When graphene oxide is reduced, the functional groups are released and the structure becomes more ordered. The degree of reduction might be tunable with the process parameters. In our work, graphene oxide is prepared and the effect of thermal and chemical reduction is investigated. The samples are characterized with TG/DTA-MS, SEM-EDX, TEM, XPS, ATR-FTIR, Raman spectroscopy and XRD. Their electrical resistance, cyclic voltammetry and photocatalytic activity data are investigated. The conductivity can be varied by several orders of magnitude, offering a tool to match its electrical properties to certain applications. Low temperature reduction in air offers a material with the highest capacitance, which might be used in supercapacitors. The bare graphene oxide has considerably larger photocatalytic activity than P25 TiO2. Reduction decreases the activity, meaning that reduced graphene oxide can be used as an electron sink in composite photocatalysts, but does not contribute to the photocatalytic activity by itself.

3.
Nanomaterials (Basel) ; 10(2)2020 Jan 31.
Artigo em Inglês | MEDLINE | ID: mdl-32023933

RESUMO

TiO2 and ZnO single and multilayers were deposited on hydroxyl functionalized multi-walled carbon nanotubes using atomic layer deposition. The bare carbon nanotubes and the resulting heterostructures were characterized by TG/DTA, Raman, XRD, SEM-EDX, XPS, TEM-EELS-SAED and low temperature nitrogen adsorption techniques, and their photocatalytic and gas sensing activities were also studied. The carbon nanotubes (CNTs) were uniformly covered with anatase TiO2 and wurtzite ZnO layers and with their combinations. In the photocatalytic degradation of methyl orange, the most beneficial structures are those where ZnO is the external layer, both in the case of single and double oxide layer covered CNTs (CNT-ZnO and CNT-TiO2-ZnO). The samples with multilayer oxides (CNT-ZnO-TiO2 and CNT-TiO2-ZnO) have lower catalytic activity due to their larger average densities, and consequently lower surface areas, compared to single oxide layer coated CNTs (CNT-ZnO and CNT-TiO2). In contrast, in gas sensing it is advantageous to have TiO2 as the outer layer. Since ZnO has higher conductivity, its gas sensing signals are lower when reacting with NH3 gas. The double oxide layer samples have higher resistivity, and hence a larger gas sensing response than their single oxide layer counterparts.

4.
Materials (Basel) ; 12(7)2019 Apr 02.
Artigo em Inglês | MEDLINE | ID: mdl-30987035

RESUMO

Vertically aligned carbon nanotubes (VACNTs or "CNT forest") were decorated with semiconductor particles (TiO2 and ZnO) by atomic layer deposition (ALD). Both the structure and morphology of the components were systematically studied using scanning (SEM) and high resolution transmission electron microscopy (HRTEM), energy-dispersive X-ray spectroscopy (EDX), Raman spectroscopy, and X-ray diffraction (XRD) methods. Characterization results revealed that the decoration was successful in the whole bulk of VACNTs. The effect of a follow-up heat treatment was also investigated and its effect on the structure was proved. It was attested that atomic layer deposition is a suitable technique for the fabrication of semiconductor/vertically aligned carbon nanotubes composites. Regarding their technological importance, we hope that semiconductor/CNT forest nanocomposites find potential application in the near future.

5.
Sci Rep ; 7(1): 4337, 2017 06 28.
Artigo em Inglês | MEDLINE | ID: mdl-28659578

RESUMO

Carbon nanospheres (CNSs) were prepared by hydrothermal synthesis, and coated with TiO2 and ZnO nanofilms by atomic layer deposition. Subsequently, through burning out the carbon core templates hollow metal oxide nanospheres were obtained. The substrates, the carbon-metal oxide composites and the hollow nanospheres were characterized with TG/DTA-MS, FTIR, Raman, XRD, SEM-EDX, TEM-SAED and their photocatalytic activity was also investigated. The results indicate that CNSs are not beneficial for photocatalysis, but the crystalline hollow metal oxide nanospheres have considerable photocatalytic activity.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA