RESUMO
World is now experiencing a major health calamity due to the coronavirus disease (COVID-19) pandemic, caused by the severe acute respiratory syndrome coronavirus clade 2. The foremost challenge facing the scientific community is to explore the growth and transmission capability of the virus. Use of artificial intelligence (AI), such as deep learning, in (i) rapid disease detection from x-ray or computed tomography (CT) or high-resolution CT (HRCT) images, (ii) accurate prediction of the epidemic patterns and their saturation throughout the globe, (iii) forecasting the disease and psychological impact on the population from social networking data, and (iv) prediction of drug-protein interactions for repurposing the drugs, has attracted much attention. In the present study, we describe the role of various AI-based technologies for rapid and efficient detection from CT images complementing quantitative real-time polymerase chain reaction and immunodiagnostic assays. AI-based technologies to anticipate the current pandemic pattern, prevent the spread of disease, and face mask detection are also discussed. We inspect how the virus transmits depending on different factors. We investigate the deep learning technique to assess the affinity of the most probable drugs to treat COVID-19. This article is categorized under:Application Areas > Health CareAlgorithmic Development > Biological Data MiningTechnologies > Machine Learning.
RESUMO
Interaction among different pathways, such as metabolic, signaling and gene regulatory networks, of cellular system is responsible to maintain homeostasis in a mammalian cell. Malfunctioning of this cooperation may lead to many complex diseases, such as cancer and type 2 diabetes. Timescale differences among these pathways make their integration a daunting task. Metabolic, signaling and gene regulatory networks have three different timescales, such as, ultrafast, fast and slow respectively. The article deals with this problem by developing a support vector regression (SVR) based three timescale model with the application of genetic algorithm based nonlinear controller. The proposed model can successfully capture the nonlinear transient dynamics and regulations of such integrated biochemical pathway under consideration. Besides, the model is quite capable of predicting the effects of certain drug targets for many types of complex diseases. Here, energy and cell proliferation management of mammalian cancer cells have been explored and analyzed with the help of the proposed novel approach. Previous investigations including in silico/in vivo/in vitro experiments have validated the results (the regulations of glucose transporter 1 (glut1), hexokinase (HK), and hypoxia-inducible factor-1 α (HIF-1 α ) among others, and the switching of pyruvate kinase (M2 isoform) between dimer and tetramer) generated by this model proving its effectiveness. Subsequently, the model predicts the effects of six selected drug targets, such as, the deactivation of transketolase and glucose-6-phosphate isomerase among others, in the case of mammalian malignant cells in terms of growth, proliferation, fermentation, and energy supply in the form of adenosine triphosphate (ATP).