Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 45
Filtrar
Mais filtros

Base de dados
País/Região como assunto
Tipo de documento
Intervalo de ano de publicação
1.
Proc Natl Acad Sci U S A ; 112(43): E5834-43, 2015 Oct 27.
Artigo em Inglês | MEDLINE | ID: mdl-26430237

RESUMO

Enzymes of central carbon metabolism (CCM) in Mycobacterium tuberculosis (Mtb) make an important contribution to the pathogen's virulence. Evidence is emerging that some of these enzymes are not simply playing the metabolic roles for which they are annotated, but can protect the pathogen via additional functions. Here, we found that deficiency of 2-hydroxy-3-oxoadipate synthase (HOAS), the E1 component of the α-ketoglutarate (α-KG) dehydrogenase complex (KDHC), did not lead to general metabolic perturbation or growth impairment of Mtb, but only to the specific inability to cope with glutamate anaplerosis and nitroxidative stress. In the former role, HOAS acts to prevent accumulation of aldehydes, including growth-inhibitory succinate semialdehyde (SSA). In the latter role, HOAS can participate in an alternative four-component peroxidase system, HOAS/dihydrolipoyl acetyl transferase (DlaT)/alkylhydroperoxide reductase colorless subunit gene (ahpC)-neighboring subunit (AhpD)/AhpC, using α-KG as a previously undescribed source of electrons for reductase action. Thus, instead of a canonical role in CCM, the E1 component of Mtb's KDHC serves key roles in situational defense that contribute to its requirement for virulence in the host. We also show that pyruvate decarboxylase (AceE), the E1 component of pyruvate dehydrogenase (PDHC), can participate in AceE/DlaT/AhpD/AhpC, using pyruvate as a source of electrons for reductase action. Identification of these systems leads us to suggest that Mtb can recruit components of its CCM for reactive nitrogen defense using central carbon metabolites.


Assuntos
Ácido Glutâmico/metabolismo , Complexo Cetoglutarato Desidrogenase/metabolismo , Mycobacterium tuberculosis/metabolismo , Nitrosação , Estresse Oxidativo , Animais , Camundongos , Camundongos Endogâmicos C57BL
2.
Trop Med Int Health ; 22(11): 1414-1427, 2017 11.
Artigo em Inglês | MEDLINE | ID: mdl-28869696

RESUMO

OBJECTIVE: The underlying problem in lymphatic filariasis is irreversible swelling of the limbs (lymphoedema), which is a unique feature of lymphatic insufficiency. It is still unclear whether the natural ability of lymphatics to form functional lymphatic vasculature is achieved or attenuated in the lymphoedemal pathology. Clinical studies have clearly shown that circulating lymphatic progenitors (CLPs), a subset of bone marrow-derived mononuclear cells (PBMCs), contribute to post-natal lymph vasculogenesis. CLP-based revascularisation could be a promising strategy to bypass the endothelial disruption and damage incurred by the filarial parasites. Thus our aim was to compare and characterise the functional prowess of PBMCs in physiological and lymphoedemal pathology. METHODS: PBMCs were isolated from venous blood sample from drug-naive endemic normals (EN) and drug-deprived filarial lymphoedema (FL) individuals using density gradient centrifugation. Adhesion, transwell migration and in vitro matrigel assays were employed to characterise the lymphvasculogenic potential of PBMCs. CLPs were phenotypically characterised using flow cytometry; expression levels of lymphatic markers and inflammatory cytokines were quantified using qRT-PCR and ELISA, respectively. RESULTS: PBMCs from FL group display poor adherence to fibronectin (P = 0.040), reduced migration towards SDF-1α (P = 0.035), impaired tubular network (P = 0.004) and branching point (P = 0.048) formation. The PBMC mRNA expression of VEGFR3 (P = 0.039) and podoplanin (P = 0.050) was elevated, whereas integrin α9 (P = 0.046) was inhibited in FL individuals; additionally, the surface expression of CD34 (P = 0.048) was significantly reduced in the FL group compared to the EN group. CONCLUSION: PBMCs from filarial lymphoedema show defective and dysregulated lymphvasculogenic function compared to endemic normals.


Assuntos
Filariose Linfática/patologia , Leucócitos Mononucleares/fisiologia , Linfedema , Adulto , Idoso , Antígenos CD34/sangue , Movimento Celular , Quimiocina CXCL12/sangue , Filariose Linfática/sangue , Doenças Endêmicas , Feminino , Fibronectinas/sangue , Humanos , Índia , Cadeias alfa de Integrinas/sangue , Linfedema/sangue , Linfedema/etiologia , Masculino , Glicoproteínas de Membrana , Pessoa de Meia-Idade , RNA Mensageiro/metabolismo , Valores de Referência , Receptor 3 de Fatores de Crescimento do Endotélio Vascular/sangue
3.
J Pharmacol Exp Ther ; 358(3): 371-86, 2016 09.
Artigo em Inglês | MEDLINE | ID: mdl-27411717

RESUMO

To identify novel targets for neuropathic pain, 3097 mouse knockout lines were tested in acute and persistent pain behavior assays. One of the lines from this screen, which contained a null allele of the adapter protein-2 associated kinase 1 (AAK1) gene, had a normal response in acute pain assays (hot plate, phase I formalin), but a markedly reduced response to persistent pain in phase II formalin. AAK1 knockout mice also failed to develop tactile allodynia following the Chung procedure of spinal nerve ligation (SNL). Based on these findings, potent, small-molecule inhibitors of AAK1 were identified. Studies in mice showed that one such inhibitor, LP-935509, caused a reduced pain response in phase II formalin and reversed fully established pain behavior following the SNL procedure. Further studies showed that the inhibitor also reduced evoked pain responses in the rat chronic constriction injury (CCI) model and the rat streptozotocin model of diabetic peripheral neuropathy. Using a nonbrain-penetrant AAK1 inhibitor and local administration of an AAK1 inhibitor, the relevant pool of AAK1 for antineuropathic action was found to be in the spinal cord. Consistent with these results, AAK1 inhibitors dose-dependently reduced the increased spontaneous neural activity in the spinal cord caused by CCI and blocked the development of windup induced by repeated electrical stimulation of the paw. The mechanism of AAK1 antinociception was further investigated with inhibitors of α2 adrenergic and opioid receptors. These studies showed that α2 adrenergic receptor inhibitors, but not opioid receptor inhibitors, not only prevented AAK1 inhibitor antineuropathic action in behavioral assays, but also blocked the AAK1 inhibitor-induced reduction in spinal neural activity in the rat CCI model. Hence, AAK1 inhibitors are a novel therapeutic approach to neuropathic pain with activity in animal models that is mechanistically linked (behaviorally and electrophysiologically) to α2 adrenergic signaling, a pathway known to be antinociceptive in humans.


Assuntos
Neuralgia/tratamento farmacológico , Inibidores de Proteínas Quinases/farmacologia , Proteínas Serina-Treonina Quinases/antagonistas & inibidores , Animais , Fenômenos Eletrofisiológicos/efeitos dos fármacos , Técnicas de Inativação de Genes , Células HEK293 , Humanos , Masculino , Camundongos , Neuralgia/metabolismo , Neuralgia/fisiopatologia , Nociceptividade/efeitos dos fármacos , Fenótipo , Inibidores de Proteínas Quinases/uso terapêutico , Proteínas Serina-Treonina Quinases/deficiência , Proteínas Serina-Treonina Quinases/genética , Ratos , Medula Espinal/efeitos dos fármacos , Medula Espinal/enzimologia , Medula Espinal/fisiopatologia
4.
Bioorg Med Chem Lett ; 26(17): 4165-9, 2016 09 01.
Artigo em Inglês | MEDLINE | ID: mdl-27496211

RESUMO

Herein we describe the structure activity relationships uncovered in the pursuit of an mGluR5 positive allosteric modulator (PAM) for the treatment of schizophrenia. It was discovered that certain modifications of an oxazolidinone-based chemotype afforded predictable changes in the pharmacological profile to give analogs with a wide range of functional activities. The discovery of potent silent allosteric modulators (SAMs) allowed interrogation of the mechanism-based liabilities associated with mGluR5 activation and drove our medicinal chemistry effort toward the discovery of low efficacy (fold shift) PAMs devoid of agonist activity. This work resulted in the identification of dipyridyl 22 (BMS-952048), a compound with a favorable free fraction, efficacy in a rodent-based cognition model, and low potential for convulsions in mouse.


Assuntos
Convulsivantes/química , Oxazolidinonas/química , Receptor de Glutamato Metabotrópico 5/metabolismo , Regulação Alostérica/efeitos dos fármacos , Animais , Convulsivantes/metabolismo , Convulsivantes/farmacologia , Humanos , Camundongos , Camundongos Endogâmicos C57BL , Oxazolidinonas/metabolismo , Oxazolidinonas/farmacologia , Ratos , Receptor de Glutamato Metabotrópico 5/agonistas , Receptor de Glutamato Metabotrópico 5/química , Reconhecimento Psicológico/efeitos dos fármacos , Relação Estrutura-Atividade
5.
Bioorg Med Chem Lett ; 26(24): 5871-5876, 2016 12 15.
Artigo em Inglês | MEDLINE | ID: mdl-27856084

RESUMO

Schizophrenia is a serious illness that affects millions of patients and has been associated with N-methyl-d-aspartate receptor (NMDAR) hypofunction. It has been demonstrated that activation of metabotropic glutamate receptor 5 (mGluR5) enhances NMDA receptor function, suggesting the potential utility of mGluR5 positive allosteric modulators (PAMs) in the treatment of schizophrenia. Herein we describe the optimization of an mGluR5 PAM by replacement of a phenyl with aliphatic heterocycles and carbocycles as a strategy to reduce bioactivation in a biaryl acetylene chemotype. Replacement with a difluorocyclobutane followed by further optimization culminated in the identification of compound 32, a low fold shift PAM with reduced bioactivation potential. Compound 32 demonstrated favorable brain uptake and robust efficacy in mouse novel object recognition (NOR) at low doses.


Assuntos
Oxazolidinonas/farmacologia , Piridinas/farmacologia , Receptor de Glutamato Metabotrópico 5/metabolismo , Regulação Alostérica/efeitos dos fármacos , Animais , Relação Dose-Resposta a Droga , Humanos , Camundongos , Estrutura Molecular , Oxazolidinonas/síntese química , Oxazolidinonas/química , Piridinas/síntese química , Piridinas/química , Ratos , Relação Estrutura-Atividade
6.
J Biol Chem ; 288(30): 21688-702, 2013 Jul 26.
Artigo em Inglês | MEDLINE | ID: mdl-23760263

RESUMO

Allosteric regulation often controls key branch points in metabolic processes. Mycobacterium tuberculosis 2-hydroxy-3-oxoadipate synthase (HOAS), a thiamin diphosphate (ThDP)-dependent enzyme, produces 2-hydroxy-3-oxoadipate using 2-ketoglutarate and glyoxylate. The proposed chemical mechanism in analogy with other ThDP-dependent carboligases involves multiple ThDP-bound covalent intermediates. Acetyl coenzyme A is an activator, and GarA, a forkhead association domain-containing protein known to regulate glutamate metabolism, is an allosteric inhibitor of HOAS. Steady state kinetics using assays to study the first half and the full catalytic cycle suggested that the regulators act at different steps in the overall mechanism. To explore the modes of regulation and to test the effects on individual catalytic steps, we performed circular dichroism (CD) studies using a non-decarboxylatable 2-ketoglutarate analog and determined the distribution of ThDP-bound covalent intermediates during the steady state of the HOAS reaction using one-dimensional (1)H gradient carbon heteronuclear single quantum coherence NMR. The results suggest that acetyl coenzyme A acts as a mixed V and K type activator and predominantly affects the predecarboxylation steps. GarA does not inhibit the formation of the predecarboxylation analog and does not affect the accumulation of the postdecarboxylation covalent intermediate derived from 2-ketoglutarate; however, it decreases the abundance of the product ThDP adduct in the HOAS pathway. Thus, the two regulators act on different halves of the catalytic cycle in an unusual regulatory regime.


Assuntos
Proteínas de Bactérias/metabolismo , Mycobacterium tuberculosis/metabolismo , Oxo-Ácido-Liases/metabolismo , Tiamina Pirofosfato/metabolismo , Acetilcoenzima A/metabolismo , Adipatos/química , Adipatos/metabolismo , Aldeído-Cetona Transferases , Algoritmos , Regulação Alostérica , Proteínas de Bactérias/genética , Biocatálise , Dicroísmo Circular , Clonagem Molecular , Inibidores Enzimáticos/metabolismo , Glioxilatos/química , Glioxilatos/metabolismo , Concentração de Íons de Hidrogênio , Ácidos Cetoglutáricos/química , Ácidos Cetoglutáricos/metabolismo , Cinética , Espectroscopia de Ressonância Magnética , Modelos Químicos , Estrutura Molecular , Mycobacterium tuberculosis/genética , Oxo-Ácido-Liases/genética , Especificidade por Substrato , Tiamina Pirofosfato/química
7.
PLoS Negl Trop Dis ; 18(2): e0011972, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-38354188

RESUMO

BACKGROUND: Tropical pulmonary eosinophilia (TPE) is a chronic respiratory syndrome associated with Lymphatic Filariasis (LF), a tropical parasitic infection of the human, transmitted by mosquitoes. The larval form of LF (microfilariae) are trapped in the lungs of TPE subjects have a major role in initiating the TPE syndrome. To date, there are no reports on the potential allergen that is responsible for generating parasite-specific IgE in TPE. METHODOLOGY/PRINCIPAL FINDINGS: In this project, we screened a cDNA expression library of the microfilarial stages of Wuchereria bancrofti with monoclonal IgE antibodies prepared from subjects with clinical filarial infections. Our studies identified a novel molecule that showed significant sequence similarity to an allergen. A blast analysis showed the presence of similar proteins in a number of nematodes parasites. Thus, we named this molecule as Nematode Pan Allergen (NPA). Subsequent functional analysis showed that NPA is a potent allergen that can cause release of histamine from mast cells, induce secretion of proinflammatory cytokines from alveolar macrophages and promote accumulation of eosinophils in the tissue, all of which occur in TPE lungs. CONCLUSIONS/SIGNIFICANCE: Based on our results, we conclude that the NPA protein secreted by the microfilariae of W. bancrofti may play a significant role in the pathology of TPE syndrome in LF infected individuals. Further studies on this molecule can help design an approach to neutralize the NPA in an attempt to reduce the pathology associated with TPE in LF infected subjects.


Assuntos
Filariose Linfática , Eosinofilia Pulmonar , Animais , Humanos , Wuchereria bancrofti/genética , Eosinofilia Pulmonar/parasitologia , Alérgenos/genética , Microfilárias , Imunoglobulina E
8.
Pathology ; 56(4): 556-564, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38413253

RESUMO

We investigated the frequency and outcome of mono-hit and multi-hit TP53 aberrations [biallelic or ≥1 TP53 mutations (TP53mut) or TP53mut with variant allele frequency (VAF) ≥55%] in an Indian cohort of newly diagnosed multiple myeloma (NDMM) patients. We employed fluorescence insitu hybridisation (FISH; n=457) and targeted next-generation sequencing (NGS; n=244) on plasma cell-enriched samples. We also studied the impact of TP53mut in cases with and without TP53 deletions (TP53del). In our cohort with a median age of 60 years, TP53del and TP53mut were seen in 12.9% (n=59/457; 14-95% cells) and 10.2% (n=25/244; 30 variants; VAF 3.4-98.2%; median 38.2%) respectively. Mono-hit and multi-hit-TP53 aberrations were observed in 10.2% and 7.8%, respectively. Compared to TP53-wild-type (TP53wt), mono-hit and multi-hit TP53 aberrations were associated with significantly poorer progression-free survival (PFS) (22.6 vs 12.1 vs 9.5 months; p=0.004) and overall survival (OS) [not reached (NR) vs 13.1 vs 15.6 months respectively; p=0.024]. However, multi-hit TP53 did not significantly differ in OS/PFS compared to mono-hit cases. Compared to TP53wt, PFS and OS were significantly poorer in patients with TP53mut only (9.5 vs 22.6 months and 12.1 months vs NR, respectively; p=0.020/0.004). TP53mut retained its significance even in the presence of any Revised International Staging System (HR 2.1; 95% CI 1.1-3.8; p=0.015) for OS. The detection of additional cases with TP53 aberrations, as well as poor survival associated with the presence of mutation alone, supports TP53mut testing in NDMM at least in patients without TP53del and other high-risk cytogenetic abnormalities.


Assuntos
Mieloma Múltiplo , Mutação , Proteína Supressora de Tumor p53 , Humanos , Mieloma Múltiplo/genética , Mieloma Múltiplo/diagnóstico , Mieloma Múltiplo/mortalidade , Mieloma Múltiplo/patologia , Pessoa de Meia-Idade , Feminino , Masculino , Proteína Supressora de Tumor p53/genética , Idoso , Adulto , Idoso de 80 Anos ou mais , Hibridização in Situ Fluorescente , Sequenciamento de Nucleotídeos em Larga Escala , Prognóstico
9.
Biochemistry ; 52(51): 9375-84, 2013 Dec 23.
Artigo em Inglês | MEDLINE | ID: mdl-24251446

RESUMO

Tuberculosis remains a global health emergency that calls for treatment regimens directed at new targets. Here we explored lipoamide dehydrogenase (Lpd), a metabolic and detoxifying enzyme in Mycobacterium tuberculosis (Mtb) whose deletion drastically impairs Mtb's ability to establish infection in the mouse. Upon screening more than 1.6 million compounds, we identified N-methylpyridine 3-sulfonamides as potent and species-selective inhibitors of Mtb Lpd affording >1000-fold selectivity versus the human homologue. The sulfonamides demonstrated low nanomolar affinity and bound at the lipoamide channel in an Lpd-inhibitor cocrystal. Their selectivity could be attributed, at least partially, to hydrogen bonding of the sulfonamide amide oxygen with the species variant Arg93 in the lipoamide channel. Although potent and selective, the sulfonamides did not enter mycobacteria, as determined by their inability to accumulate in Mtb to effective levels or to produce changes in intracellular metabolites. This work demonstrates that high potency and selectivity can be achieved at the lipoamide-binding site of Mtb Lpd, a site different from the NAD⁺/NADH pocket targeted by previously reported species-selective triazaspirodimethoxybenzoyl inhibitors.


Assuntos
Antituberculosos/farmacologia , Proteínas de Bactérias/antagonistas & inibidores , Di-Hidrolipoamida Desidrogenase/antagonistas & inibidores , Inibidores Enzimáticos/farmacologia , Mycobacterium tuberculosis/enzimologia , Sulfonamidas/farmacologia , Ácido Tióctico/análogos & derivados , Antituberculosos/efeitos adversos , Antituberculosos/química , Arginina/química , Proteínas de Bactérias/química , Proteínas de Bactérias/genética , Proteínas de Bactérias/metabolismo , Benzenoacetamidas/efeitos adversos , Benzenoacetamidas/química , Benzenoacetamidas/farmacologia , Sítios de Ligação , Transporte Biológico/efeitos dos fármacos , Membrana Celular/metabolismo , Permeabilidade da Membrana Celular , Di-Hidrolipoamida Desidrogenase/química , Di-Hidrolipoamida Desidrogenase/genética , Di-Hidrolipoamida Desidrogenase/metabolismo , Avaliação Pré-Clínica de Medicamentos , Inibidores Enzimáticos/efeitos adversos , Inibidores Enzimáticos/química , Ensaios de Triagem em Larga Escala , Humanos , Moduladores de Transporte de Membrana/efeitos adversos , Moduladores de Transporte de Membrana/química , Moduladores de Transporte de Membrana/farmacologia , Testes de Sensibilidade Microbiana , Conformação Molecular , Proteínas Mutantes/antagonistas & inibidores , Proteínas Mutantes/química , Proteínas Mutantes/genética , Proteínas Mutantes/metabolismo , Mycobacterium tuberculosis/efeitos dos fármacos , Mycobacterium tuberculosis/metabolismo , Proteínas Recombinantes/química , Proteínas Recombinantes/metabolismo , Bibliotecas de Moléculas Pequenas , Relação Estrutura-Atividade , Sulfonamidas/efeitos adversos , Sulfonamidas/química , Ácido Tióctico/metabolismo
10.
Clin Transl Sci ; 16(12): 2438-2457, 2023 12.
Artigo em Inglês | MEDLINE | ID: mdl-37735717

RESUMO

This paper summarizes key features of the dose-finding strategies used in the development of 11 approved new molecular entities that are first-in-class enzyme replacement therapy (ERT), with a goal to gain insight into the dose exploration approaches to inform efficient dose-finding in future development of biological products for Inborn Errors of Metabolism (IEM). Dose exploration should preferably begin in in vitro studies, followed by testing multiple doses in an appropriate animal disease model, when available, which can provide important information for dose assessment in humans. Performing adequate dose-finding in early phase clinical studies in a well-defined study population, including pediatric subjects, is generally critical to inform dose selection for pivotal trials; alternatively, additional dose exploration can be incorporated as part of a pivotal trial. Two important considerations for successful dose selection include (1) identifying appropriate disease-specific endpoints, including pharmacodynamic (PD) end points and intermediate clinical end points or clinical end points, and (2) designing a study with adequate treatment durations for evaluating these end points. Appropriately selected PD biomarkers is useful for dose selection, and early development of these biomarkers can facilitate the overall clinical development program. Optimization of ERT doses, as well as evaluations of patient intrinsic factors and/or immune tolerance strategies may be necessary to overcome antibody responses or increase efficacy in IEM.


Assuntos
Terapia de Reposição de Enzimas , Animais , Humanos , Criança , Biomarcadores
11.
AAPS J ; 25(4): 54, 2023 05 26.
Artigo em Inglês | MEDLINE | ID: mdl-37231199

RESUMO

The kidneys and liver are major organs involved in eliminating small-molecule drugs from the body. Characterization of the effects of renal impairment (RI) and hepatic impairment (HI) on pharmacokinetics (PK) have informed dosing in patients with these organ impairments. However, the knowledge about the impact of organ impairment on therapeutic peptides and proteins is still evolving. In this study, we reviewed how often therapeutic peptides and proteins were assessed for the effect of RI and HI on PK, the findings, and the resulting labeling recommendations. RI effects were reported in labeling for 30 (57%) peptides and 98 (39%) proteins and HI effects for 20 (38%) peptides and 55 (22%) proteins. Dose adjustments were recommended for RI in 11 of the 30 (37%) peptides and 10 of the 98 (10%) proteins and for HI in 7 of the 20 (35%) peptides and 3 of the 55 (5%) proteins. Additional actionable labeling includes risk mitigation strategies; for example, some product labels have recommended avoid use or monitor toxicities in patients with HI. Over time, there is an increasing structural diversity of therapeutic peptides and proteins, including the use of non-natural amino acids and conjugation technologies, which suggests a potential need for reassessing the need to evaluate the effect of RI and HI. Herein, we discuss scientific considerations for weighing the risk of PK alteration due to RI or HI for peptide and protein products. We briefly discuss other organs that may affect the PK of peptides and proteins administered via other delivery routes.


Assuntos
Rim , Insuficiência Renal , Humanos , Rim/metabolismo , Peptídeos/farmacocinética , Proteínas/metabolismo , Preparações Farmacêuticas/metabolismo
12.
Biochemistry ; 51(40): 7940-52, 2012 Oct 09.
Artigo em Inglês | MEDLINE | ID: mdl-22970650

RESUMO

Glyoxylate carboligase (GCL) is a thiamin diphosphate (ThDP)-dependent enzyme, which catalyzes the decarboxylation of glyoxylate and ligation to a second molecule of glyoxylate to form tartronate semialdehyde (TSA). This enzyme is unique among ThDP enzymes in that it lacks a conserved glutamate near the N1' atom of ThDP (replaced by Val51) or any other potential acid-base side chains near ThDP. The V51D substitution shifts the pH optimum to 6.0-6.2 (pK(a) of 6.2) for TSA formation from pH 7.0-7.7 in wild-type GCL. This pK(a) is similar to the pK(a) of 6.1 for the 1',4'-iminopyrimidine (IP)-4'-aminopyrimidinium (APH(+)) protonic equilibrium, suggesting that the same groups control both ThDP protonation and TSA formation. The key covalent ThDP-bound intermediates were identified on V51D GCL by a combination of steady-state and stopped-flow circular dichroism methods, yielding rate constants for their formation and decomposition. It was demonstrated that active center variants with substitution at I393 could synthesize (S)-acetolactate from pyruvate solely, and acetylglycolate derived from pyruvate as the acetyl donor and glyoxylate as the acceptor, implying that this substitutent favored pyruvate as the donor in carboligase reactions. Consistent with these observations, the I393A GLC variants could stabilize the predecarboxylation intermediate analogues derived from acetylphosphinate, propionylphosphinate, and methyl acetylphosphonate in their IP tautomeric forms notwithstanding the absence of the conserved glutamate. The role of the residue at the position occupied typically by the conserved Glu controls the pH dependence of kinetic parameters, while the entire reaction sequence could be catalyzed by ThDP itself, once the APH(+) form is accessible.


Assuntos
Ácido Glutâmico/química , Ligases/metabolismo , Pirimidinas/química , Tiamina Pirofosfato/química , Tiamina Pirofosfato/metabolismo , Substituição de Aminoácidos , Dicroísmo Circular , Regulação da Expressão Gênica , Concentração de Íons de Hidrogênio , Modelos Moleculares , Estrutura Molecular , Mutagênese Sítio-Dirigida , Ácido Pirúvico , Especificidade por Substrato
13.
J Am Chem Soc ; 134(1): 665-72, 2012 Jan 11.
Artigo em Inglês | MEDLINE | ID: mdl-22092024

RESUMO

Knowledge of the state of ionization and tautomerization of heteroaromatic cofactors when enzyme-bound is essential for formulating a detailed stepwise mechanism via proton transfers, the most commonly observed contribution to enzyme catalysis. In the bifunctional coenzyme, thiamin diphosphate (ThDP), both aromatic rings participate in catalysis, the thiazolium ring as an electrophilic covalent catalyst and the 4'-aminopyrimidine as acid-base catalyst involving its 1',4'-iminopyrimidine tautomeric form. Two of four ionization and tautomeric states of ThDP are well characterized via circular dichroism spectral signatures on several ThDP superfamily members. Yet, the method is incapable of providing information about specific proton locations, which in principle may be accessible via NMR studies. To determine the precise ionization/tautomerization states of ThDP during various stages of the catalytic cycle, we report the first application of solid-state NMR spectroscopy to ThDP enzymes, whose large mass (160,000-250,000 Da) precludes solution NMR approaches. Three de novo synthesized analogues, [C2,C6'-(13)C(2)]ThDP, [C2-(13)C]ThDP, and [N4'-(15)N]ThDP used with three enzymes revealed that (a) binding to the enzymes activates both the 4'-aminopyrimidine (via pK(a) elevation) and the thiazolium rings (pK(a) suppression); (b) detection of a pre-decarboxylation intermediate analogue using [C2,C6'-(13)C(2)]ThDP, enables both confirmation of covalent bond formation and response in 4'-aminopyrimidine ring's tautomeric state to intermediate formation, supporting the mechanism we postulate; and (c) the chemical shift of bound [N4'-(15)N]ThDP provides plausible models for the participation of the 1',4'-iminopyrimidine tautomer in the mechanism. Unprecedented detail is achieved about proton positions on this bifunctional coenzyme on large enzymes in their active states.


Assuntos
Carboxiliases/química , Carboxiliases/metabolismo , Ressonância Magnética Nuclear Biomolecular , Tiamina/química , Tiamina/metabolismo , Biocatálise , Escherichia coli/enzimologia , Modelos Moleculares , Conformação Proteica , Saccharomyces cerevisiae/enzimologia
14.
J Am Chem Soc ; 134(45): 18644-55, 2012 Nov 14.
Artigo em Inglês | MEDLINE | ID: mdl-23088422

RESUMO

Spectroscopic identification and characterization of covalent and noncovalent intermediates on large enzyme complexes is an exciting and challenging area of modern enzymology. The Escherichia coli pyruvate dehydrogenase multienzyme complex (PDHc), consisting of multiple copies of enzymic components and coenzymes, performs the oxidative decarboxylation of pyruvate to acetyl-CoA and is central to carbon metabolism linking glycolysis to the Krebs cycle. On the basis of earlier studies, we hypothesized that the dynamic regions of the E1p component, which undergo a disorder-order transition upon substrate binding to thiamin diphosphate (ThDP), play a critical role in modulation of the catalytic cycle of PDHc. To test our hypothesis, we kinetically characterized ThDP-bound covalent intermediates on the E1p component, and the lipoamide-bound covalent intermediate on the E2p component in PDHc and in its variants with disrupted active-site loops. Our results suggest that formation of the first covalent predecarboxylation intermediate, C2α-lactylthiamin diphosphate (LThDP), is rate limiting for the series of steps culminating in acetyl-CoA formation. Substitutions in the active center loops produced variants with up to 900-fold lower rates of formation of the LThDP, demonstrating that these perturbations directly affected covalent catalysis. This rate was rescued by up to 5-fold upon assembly to PDHc of the E401K variant. The E1p loop dynamics control covalent catalysis with ThDP and are modulated by PDHc assembly, presumably by selection of catalytically competent loop conformations. This mechanism could be a general feature of 2-oxoacid dehydrogenase complexes because such interfacial dynamic regions are highly conserved.


Assuntos
Escherichia coli/enzimologia , Complexo Piruvato Desidrogenase/metabolismo , Biocatálise , Modelos Moleculares , Estrutura Molecular , Complexo Piruvato Desidrogenase/química , Tiamina Pirofosfato/análogos & derivados , Tiamina Pirofosfato/química , Tiamina Pirofosfato/metabolismo
15.
J Am Chem Soc ; 134(8): 3873-85, 2012 Feb 29.
Artigo em Inglês | MEDLINE | ID: mdl-22300533

RESUMO

Thiamin diphosphate (ThDP) dependent enzymes perform crucial C-C bond forming and breaking reactions in sugar and amino acid metabolism and in biosynthetic pathways via a sequence of ThDP-bound covalent intermediates. A member of this superfamily, yeast pyruvate decarboxylase (YPDC) carries out the nonoxidative decarboxylation of pyruvate and is mechanistically a simpler ThDP enzyme. YPDC variants created by substitution at the active center (D28A, E51X, and E477Q) and on the substrate activation pathway (E91D and C221E) display varying activity, suggesting that they stabilize different covalent intermediates. To test the role of both rings of ThDP in YPDC catalysis (the 4'-aminopyrimidine as acid-base, and thiazolium as electrophilic covalent catalyst), we applied a combination of steady state and time-resolved circular dichroism experiments (assessing the state of ionization and tautomerization of enzyme-bound ThDP-related intermediates), and chemical quench of enzymatic reaction mixtures followed by NMR characterization of the ThDP-bound intermediates released from YPDC (assessing occupancy of active centers by these intermediates and rate-limiting steps). Results suggest the following: (1) Pyruvate and analogs induce active site asymmetry in YPDC and variants. (2) The rare 1',4'-iminopyrimidine ThDP tautomer participates in formation of ThDP-bound intermediates. (3) Propionylphosphinate also binds at the regulatory site and its binding is reflected by catalytic events at the active site 20 Å away. (4) YPDC stabilizes an electrostatic model for the 4'-aminopyrimidinium ionization state, an important contribution of the protein to catalysis. The combination of tools used provides time-resolved details about individual events during ThDP catalysis; the methods are transferable to other ThDP superfamily members.


Assuntos
Pirimidinas/metabolismo , Piruvato Descarboxilase/metabolismo , Saccharomyces cerevisiae/enzimologia , Tiamina Pirofosfato/metabolismo , Biocatálise , Domínio Catalítico , Modelos Moleculares , Estrutura Molecular , Pirimidinas/química , Piruvato Descarboxilase/química , Piruvato Descarboxilase/isolamento & purificação , Tiamina Pirofosfato/química
16.
Int J Lab Hematol ; 44(1): 157-162, 2022 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-34636141

RESUMO

BACKGROUND: Immunomagnetic cell sorting (IMCS) is a preferred technique for the enrichment of plasma cells (PC) before fluorescence in situ hybridization (FISH). Here, we share our real-world experience regarding the success rate of IMCS, its limitations, and the utility of alternate sources to obtain a successful FISH in various PC disorders. MATERIALS AND METHODS: A retrospective analysis was performed in patients with a PC neoplasm, who underwent bone marrow (BM) examination, and FISH testing over 30 months. In all cases with an unsuccessful IMCS, an attempt was made to identify the cause of failure. RESULTS: Immunomagnetic cell sorting of PCs was successful in 395/450 cases (87.8%; 77/98 cases (78.6%) with <10% PCs and 318/352 (90.3%) with ≥10% PCs in BM aspirate; P = .003). Among cases with unsuccessful IMCS (<10% PCs; n = 21 and ≥10% PCs; n = 34), an alternate source could be used successfully in 34 (62%) patients and includes air-dried trephine biopsy imprint smears (n = 28) with aggregates or sheets of PCs, fine-needle aspiration smears/biopsy from plasmacytoma (n = 5), and ascitic fluid (n = 1). 284/395 (71.9%) patients with successful IMCS and all 34 cases with an alternate source of PCs showed at least one cytogenetic abnormality on four-probe FISH. CONCLUSION: Variations in the sample quality together with significant variation in the number of PCs between BM aspirate and the trephine biopsy imprint smears/biopsy reduce the success rate of IMCS in a real-world scenario and necessitate utilization of patient-specific alternate sources of PCs like a trephine biopsy imprint or cytology smears from extramedullary sources for successful FISH testing in PC neoplasms.


Assuntos
Hibridização in Situ Fluorescente/métodos , Interfase/genética , Neoplasias de Plasmócitos/diagnóstico , Neoplasias de Plasmócitos/genética , Plasmócitos/metabolismo , Plasmócitos/patologia , Adulto , Idoso , Idoso de 80 Anos ou mais , Biomarcadores Tumorais , Medula Óssea/patologia , Aberrações Cromossômicas , Técnicas Citológicas , Diagnóstico Diferencial , Gerenciamento Clínico , Suscetibilidade a Doenças , Feminino , Humanos , Hibridização in Situ Fluorescente/normas , Masculino , Pessoa de Meia-Idade , Gradação de Tumores , Estadiamento de Neoplasias , Estudos Retrospectivos
17.
J Med Chem ; 65(6): 4534-4564, 2022 03 24.
Artigo em Inglês | MEDLINE | ID: mdl-35261239

RESUMO

Recent mouse knockout studies identified adapter protein-2-associated kinase 1 (AAK1) as a viable target for treating neuropathic pain. BMS-986176/LX-9211 (4), as a highly selective, CNS-penetrable, and potent AAK1 inhibitor, has advanced into phase II human trials. On exploring the structure-activity relationship (SAR) around this biaryl alkyl ether chemotype, several additional compounds were found to be highly selective and potent AAK1 inhibitors with good druglike properties. Among these, compounds 43 and 58 showed very good efficacy in two neuropathic pain rat models and had excellent CNS penetration and spinal cord target engagement. Both compounds also exhibited favorable physicochemical and oral pharmacokinetic (PK) properties. Compound 58, a central pyridine isomer of BMS-986176/LX-9211 (4), was 4-fold more potent than 4 in vitro and showed lower plasma exposure needed to achieve similar efficacy compared to 4 in the CCI rat model. However, both 43 and 58 showed an inferior preclinical toxicity profile compared to 4.


Assuntos
Anestésicos Gerais , Neuralgia , Animais , Éteres/uso terapêutico , Camundongos , Neuralgia/tratamento farmacológico , Inibidores de Proteínas Quinases/farmacologia , Inibidores de Proteínas Quinases/uso terapêutico , Ratos , Medula Espinal , Relação Estrutura-Atividade
18.
J Med Chem ; 65(6): 4457-4480, 2022 03 24.
Artigo em Inglês | MEDLINE | ID: mdl-35257579

RESUMO

Recent mouse knockout studies identified adapter protein-2 associated kinase 1 (AAK1) as a viable target for treating neuropathic pain. Potent small-molecule inhibitors of AAK1 have been identified and show efficacy in various rodent pain models. (S)-1-((2',6-Bis(difluoromethyl)-[2,4'-bipyridin]-5-yl)oxy)-2,4-dimethylpentan-2-amine (BMS-986176/LX-9211) (34) was identified as a highly selective, CNS penetrant, potent AAK1 inhibitor from a novel class of bi(hetero)aryl ethers. BMS-986176/LX9211 (34) showed excellent efficacy in two rodent neuropathic pain models and excellent central nervous system (CNS) penetration and target engagement at the spinal cord with an average brain to plasma ratio of 20 in rat. The compound exhibited favorable physicochemical and pharmacokinetic properties, had an acceptable preclinical toxicity profile, and was chosen for clinical trials. BMS-986176/LX9211 (34) completed phase I trials with good human pharmacokinetics and minimum adverse events and is currently in phase II clinical trials for diabetic peripheral neuropathic pain (ClinicalTrials.gov identifier: NCT04455633) and postherpetic neuralgia (ClinicalTrials.gov identifier: NCT04662281).


Assuntos
Aminas , Neuralgia , Animais , Encéfalo , Camundongos , Neuralgia/tratamento farmacológico , Inibidores de Proteínas Quinases/farmacologia , Inibidores de Proteínas Quinases/uso terapêutico , Ratos , Medula Espinal
19.
Biochemistry ; 50(35): 7705-9, 2011 Sep 06.
Artigo em Inglês | MEDLINE | ID: mdl-21809826

RESUMO

The first component (E1o) of the Escherichia coli 2-oxoglutarate dehydrogenase complex (OGDHc) was engineered to accept substrates lacking the 5-carboxylate group by subjecting H260 and H298 to saturation mutagenesis. Apparently, H260 is required for substrate recognition, but H298 could be replaced with hydrophobic residues of similar molecular volume. To interrogate whether the second component would allow synthesis of acyl-coenzyme A derivatives, hybrid complexes consisting of recombinant components of OGDHc (o) and pyruvate dehydrogenase (p) enzymes were constructed, suggesting that a different component is the "gatekeeper" for specificity for these two multienzyme complexes in bacteria, E1p for pyruvate but E2o for 2-oxoglutarate.


Assuntos
Proteínas de Escherichia coli/química , Proteínas de Escherichia coli/metabolismo , Histidina/fisiologia , Complexo Cetoglutarato Desidrogenase/química , Complexo Cetoglutarato Desidrogenase/metabolismo , Engenharia de Proteínas/métodos , Sequência de Aminoácidos , Proteínas de Escherichia coli/genética , Complexo Cetoglutarato Desidrogenase/genética , Dados de Sequência Molecular , Especificidade por Substrato/genética
20.
Bioinformation ; 17(1): 126-131, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34393427

RESUMO

The emerging NDM-producing Enterobactereciae is a major threat to public health. The association of NDM-7 with sequence type 101 E.coli is identified in very few numbers. Therefore, it is of interest to analyse the whole genome sequence of NDM-producing uropathogenic E. coli XA31 that was found to carry numerous drug resistance genes of different antibiotic classes. The isolate E. coli belongs to ST-101 carrying blaNDM-7 coexisting with several resistance genes blaOXA-1, blaTEM1-A, blaCTX-M15, aac(6')-Ib-cr, catB3, tetB. Resfinder predicts this and four other plasmid replicons were identified using the Plasfinder in the CGE platform. The high transferable IncX3 plasmid was found to carry the NDM-7 gene. Thus, we the report the combination of NDM-7-ST101-IncX3 in India. The combination of this epidemic clone with NDM-7 is highly required to develop an effective infection control strategy.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA