Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
Nanotechnology ; 35(21)2024 Mar 04.
Artigo em Inglês | MEDLINE | ID: mdl-38364265

RESUMO

We report for the first time MoS2/CNT hybrid nanostructures for memristor applications on flexible and bio-degradable cellulose paper. In our approach, we varied two different weight percentages (10% and 20%) of CNT's in MoS2to improve the MoS2conductivity and investigate the memristor device characteristics. The device with 10% CNT shows a lowVSETvoltage of 2.5 V, which is comparatively small for planar devices geometries. The device exhibits a long data retention time and cyclic current-voltage stability of ∼104s and 102cycles, making it a potential candidate in flexible painted electronics. Along with good electrical performance, it also demonstrates a high mechanical stability for 1000 bending cycles. The conduction mechanism in the MoS2-CNT hybrid structure is corroborated by percolation and defect-induced filament formation. Additionally, the device displays synaptic plasticity performance, simulating potentiation and depression processes. Furthermore, such flexible and biodegradable cellulose-based paper electronics may pave the way to address the environmental pollution caused by electronic waste in the near future.

2.
Nanoscale ; 16(14): 7102-7109, 2024 Apr 04.
Artigo em Inglês | MEDLINE | ID: mdl-38501154

RESUMO

Transition metal dichalcogenides (TMDs) exhibit diverse properties across different phases, making them promising materials for various engineering applications. In the present work, we employed a comprehensive approach, combining experimental investigations and computational simulations to elucidate the remarkable tunable frictional characteristics of chemical vapor deposition (CVD) grown WS2 monolayers through the sliding-induced transitions between the 1H and 1T' phases. Our atomic force microscopy (AFM) measurements reveal a significant contrast in friction between the two phases, with the 1H phase displaying higher friction (∼52%) than the 1T' phase. Surprisingly, under repeated scanning at constant stress, the friction of the 1H phase decreases, eventually matching the lower friction values of the 1T' phase. It was observed that the phase transformation is irreversible and is strongly dependent on contact stresses and is accelerated as the contact stress is increased by increasing the applied normal load. Molecular dynamics (MD) simulations provide further insights into the phase transition mechanism, highlighting the role of localized lateral stress and strain induced by sliding an AFM tip on the 1H phase. The simulations confirm that sliding induced localized lateral strain plays a crucial role in the phase transition, ultimately resulting in a decrease in friction. Moreover, our simulations unveil an intriguing connection between friction, potential energy surfaces, and the localized lateral strain during the phase transformation process. Our findings not only offer insights into the tribological properties of TMD materials but also open new possibilities for tailoring their performance in various applications where reducing friction and wear is crucial.

3.
Sci Total Environ ; 922: 171317, 2024 Apr 20.
Artigo em Inglês | MEDLINE | ID: mdl-38428610

RESUMO

Sequential utilization of ozone (O3) and biological activated carbon (BAC) followed by UV/chlor(am)ine advanced oxidation process (AOP) has drawn attention in water reuse. However, the formation of disinfection by-products (DBPs) in this process is less evaluated. This study investigated the DBP formation and the relevant toxicity during the O3-BAC-UV/chlor(am)ine treatment of sand-filtered municipal secondary effluent. DBP formation in UV/chlorine and UV/dichloramine (NHCl2) processes were compared, where the impact of key operational parameters (e.g., UV wavelength, pH) on DBP formation were comprehensively evaluated. O3-BAC significantly reduced DBP formation potential (DBPFP) (58.2 %). Compared to UV/chlorine AOP, UV/NHCl2 AOP reduced DBP formation by 29.7 % in short-time treatment, while insignificantly impacting on DBPFP (p > 0.05). UV/NHCl2 AOP also led to lower calculated cytotoxicity (67.7 %) and genotoxicity (55.9 %) of DBPs compared to UV/chlorine AOP. Compared to 254 nm UV light, the utilization of 285 nm UV light decreased the formation of DBPs in wastewater treated with the UV/chlorine AOP and UV/NHCl2 AOP by 31.3 % and 19.2 %, respectively. However, the cytotoxicity and genotoxicity in UV/NHCl2 AOP using 285 nm UV light increased by 83.4 % and 58.5 %, respectively, compared to 254 nm. The concentration of DBPs formed in the UV/NHCl2 AOP at pH 8 was 54.3 % lower than that at pH 7, suggesting a better control of DBPs at alkaline condition. In the presence of bromide, UV/NHCl2 AOP tended to generate more brominated DBPs than UV/chlorine AOP. Overall, UV/NHCl2 AOP resulted in lower concentration and toxicity of DBPs compared to UV/chlorine AOP.


Assuntos
Desinfetantes , Ozônio , Poluentes Químicos da Água , Purificação da Água , Desinfecção/métodos , Carvão Vegetal , Águas Residuárias , Cloro , Raios Ultravioleta , Purificação da Água/métodos , Halogenação , Poluentes Químicos da Água/análise
4.
Mater Horiz ; 2024 Jun 19.
Artigo em Inglês | MEDLINE | ID: mdl-38894698

RESUMO

Phase changes in oxide materials such as VO2 offer a foundational platform for designing novel solid-state devices. Tuning the V : O stoichiometry offers a vast electronic phase space with non-trivial collective properties. Here, we report the observation of discrete threshold switching voltages (Vth) with constant ΔVth between cycles in vanadium oxide crystals. The observed threshold fields over 10 000 cycles are ∼100× lower than that noted for stoichiometric VO2 and show unique discrete behaviour with constant ΔVth. We correlate the observed discrete memristor behaviour with the valence change mechanism and fluctuations in the chemical composition of spatially distributed VO2-VnO2n-1 complex oxide phases that can synergistically co-operate with the insulator-metal transition resulting in sharp current jumps. The design of chemical heterogeneity in oxide crystals, therefore, offers an intriguing path to realizing low-energy neuromorphic devices.

5.
J Mater Chem B ; 2024 Aug 09.
Artigo em Inglês | MEDLINE | ID: mdl-39118433

RESUMO

Extracellular matrix (ECM) elasticity remains a crucial parameter to determine cell-material interactions (viz. adhesion, growth, and differentiation), cellular communication, and migration that are essential to tissue repair and regeneration. Supramolecular peptide hydrogels with their 3-dimensional porous network and tuneable mechanical properties have emerged as an excellent class of ECM-mimetic biomaterials with relevant dynamic attributes and bioactivity. Here, we demonstrate the design of minimalist amyloid-inspired peptide amphiphiles, CnPA (n = 6, 8, 10, 12) with tuneable peptide nanostructures that are efficiently biomineralized and cross-linked using bioactive silicates. Such hydrogel composites, CnBG exhibit excellent mechanical attributes and possess excellent self-healing abilities and collagen-like strain-stiffening ability as desired for bone ECM mimetic scaffold. The composites exhibited the formation of a hydroxyapatite mineral phase upon incubation in a simulated body fluid that rendered mechanical stiffness akin to the hydroxyapatite-bridged collagen fibers to match the bone tissue elasticity eventually. In a nutshell, peptide nanostructure-guided temporal effects and mechanical attributes demonstrate C8BG to be an optimal composite. Finally, such constructs feature the potential for adhesion, proliferation of U2OS cells, high alkaline phosphatase activity, and osteoconductivity.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA