Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros

Base de dados
País/Região como assunto
Ano de publicação
Tipo de documento
Assunto da revista
Intervalo de ano de publicação
1.
Pest Manag Sci ; 64(4): 353-9, 2008 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-18080285

RESUMO

BACKGROUND: Glyphosate is a widely used broad-spectrum herbicide. Recent studies in glyphosate-resistant (GR) crops have shown that, in addition to its herbicidal activity, glyphosate exhibits activity against fungi, thereby providing disease control benefits. In GR wheat, glyphosate has shown both preventive and curative activities against Puccinia striiformis f. sp. tritici (Erikss) CO Johnston and Puccinia triticina Erikss, which cause stripe and leaf rusts respectively. RESULTS: Laboratory studies confirmed earlier observations that glyphosate has activity against Phakopsora pachyrhizi Syd & P Syd which causes Asian soybean rust (ASR) in GR soybeans. The results showed that glyphosate at rates between 0.84 and 1.68 kg ha(-1) delayed the onset of ASR in GR soybeans. However, field trials conducted in Argentina and Brazil under natural infestations showed variable ASR control from application of glyphosate in GR soybeans. Further field studies are ongoing to define the activity of glyphosate against ASR. CONCLUSIONS: These results demonstrate the disease control activities of glyphosate against rust diseases in GR wheat and GR soybeans.


Assuntos
Basidiomycota/fisiologia , Fungicidas Industriais , Glycine max/microbiologia , Glicina/análogos & derivados , Resistência a Herbicidas/genética , Doenças das Plantas , Glycine max/genética , Glifosato
2.
Pest Manag Sci ; 64(4): 366-71, 2008 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-18161884

RESUMO

Herbicide resistance is an evolutionary event resulting from intense herbicide selection over genetically diverse weed populations. In South America, orchard, cereal and legume cropping systems show a strong dependence on glyphosate to control weeds. The goal of this report is to review the current knowledge on cases of evolved glyphosate-resistant weeds in South American agriculture. The first reports of glyphosate resistance include populations of highly diverse taxa (Lolium multiflorum Lam., Conyza bonariensis L., C. canadensis L.). In all instances, resistance evolution followed intense glyphosate use in fruit fields of Chile and Brazil. In fruit orchards from Colombia, Parthenium hysterophorus L. has shown the ability to withstand high glyphosate rates. The recent appearance of glyphosate-resistant Sorghum halepense L. and Euphorbia heterophylla L. in glyphosate-resistant soybean fields of Argentina and Brazil, respectively, is of major concern. The evolution of glyphosate resistance has clearly taken place in those agroecosystems where glyphosate exerts a strong and continuous selection pressure on weeds. The massive adoption of no-till practices together with the utilization of glyphosate-resistant soybean crops are factors encouraging increase in glyphosate use. This phenomenon has been more evident in Argentina and Brazil. The exclusive reliance on glyphosate as the main tool for weed management results in agroecosystems biologically more prone to glyphosate resistance evolution.


Assuntos
Evolução Biológica , Glicina/análogos & derivados , Herbicidas , Plantas/genética , Produtos Agrícolas , Resistência a Herbicidas/genética , Plantas Geneticamente Modificadas , América do Sul , Glifosato
3.
Pest Manag Sci ; 68(3): 430-6, 2012 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-21953884

RESUMO

BACKGROUND: In a large cropping area of northern Argentina, Sorghum halepense (Johnsongrass) has evolved towards glyphosate resistance. This study aimed to determine the molecular and biochemical basis conferring glyphosate resistance in this species. Experiments were conducted to assess target EPSPS gene sequences and (14)C-glyphosate leaf absorption and translocation to meristematic tissues. RESULTS: Individuals of all resistant (R) accessions exhibited significantly less glyphosate translocation to root (11% versus 29%) and stem (9% versus 26%) meristems when compared with susceptible (S) plants. A notably higher proportion of the applied glyphosate remained in the treated leaves of R plants (63%) than in the treated leaves of S plants (27%). In addition, individuals of S. halepense accession R(2) consistently showed lower glyphosate absorption rates in both adaxial (10-20%) and abaxial (20-25%) leaf surfaces compared with S plants. No glyphosate resistance endowing mutations in the EPSPS gene at Pro-101-106 residues were found in any of the evaluated R accessions. CONCLUSION: The results of the present investigation indicate that reduced glyphosate translocation to meristems is the primary mechanism endowing glyphosate resistance in S. halepense from cropping fields in Argentina. To a lesser extent, reduced glyphosate leaf uptake has also been shown to be involved in glyphosate-resistant S. halepense.


Assuntos
Glicina/análogos & derivados , Resistência a Herbicidas , Herbicidas/metabolismo , Sorghum/efeitos dos fármacos , Transporte Biológico , Glicina/metabolismo , Glicina/farmacologia , Herbicidas/farmacologia , Folhas de Planta/efeitos dos fármacos , Folhas de Planta/genética , Folhas de Planta/metabolismo , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Sorghum/genética , Sorghum/metabolismo , Glifosato
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA