Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 38
Filtrar
1.
Int J Mol Sci ; 24(4)2023 Feb 16.
Artigo em Inglês | MEDLINE | ID: mdl-36835391

RESUMO

Angiotensin II (AngII) is a vasoactive peptide hormone, which, under pathological conditions, contributes to the development of cardiovascular diseases. Oxysterols, including 25-hydroxycholesterol (25-HC), the product of cholesterol-25-hydroxylase (CH25H), also have detrimental effects on vascular health by affecting vascular smooth muscle cells (VSMCs). We investigated AngII-induced gene expression changes in VSMCs to explore whether AngII stimulus and 25-HC production have a connection in the vasculature. RNA-sequencing revealed that Ch25h is significantly upregulated in response to AngII stimulus. The Ch25h mRNA levels were elevated robustly (~50-fold) 1 h after AngII (100 nM) stimulation compared to baseline levels. Using inhibitors, we specified that the AngII-induced Ch25h upregulation is type 1 angiotensin II receptor- and Gq/11 activity-dependent. Furthermore, p38 MAPK has a crucial role in the upregulation of Ch25h. We performed LC-MS/MS to identify 25-HC in the supernatant of AngII-stimulated VSMCs. In the supernatants, 25-HC concentration peaked 4 h after AngII stimulation. Our findings provide insight into the pathways mediating AngII-induced Ch25h upregulation. Our study elucidates a connection between AngII stimulus and 25-HC production in primary rat VSMCs. These results potentially lead to the identification and understanding of new mechanisms in the pathogenesis of vascular impairments.


Assuntos
Angiotensina II , Músculo Liso Vascular , Esteroide Hidroxilases , Animais , Ratos , Angiotensina II/metabolismo , Células Cultivadas , Cromatografia Líquida , Expressão Gênica , Músculo Liso Vascular/enzimologia , Miócitos de Músculo Liso/metabolismo , Espectrometria de Massas em Tandem , Esteroide Hidroxilases/genética
2.
J Biol Chem ; 296: 100366, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-33545176

RESUMO

Reliable measurement of ligand binding to cell surface receptors is of outstanding biological and pharmacological importance. Resonance energy transfer-based assays are powerful approaches to achieve this goal, but the currently available methods are hindered by the necessity of receptor tagging, which can potentially alter ligand binding properties. Therefore, we developed a tag-free system to measure ligand‒receptor interactions in live cells using the Gaussia luciferase (GLuc) as a bioluminescence resonance energy transfer donor. GLuc is as small as the commonly applied Nanoluciferase but has enhanced brightness, and its proper substrate is the frequently used coelenterazine. In our assay, bystander bioluminescence resonance energy transfer is detected between a GLuc-based extracellular surface biosensor and fluorescent ligands bound to their unmodified receptors. The broad spectrum of applications includes equilibrium and kinetic ligand binding measurements for both labeled and competitive unlabeled ligands, and the assay can be utilized for different classes of plasma membrane receptors. Furthermore, the assay is suitable for high-throughput screening, as evidenced by the identification of novel α1 adrenergic receptor ligands. Our data demonstrate that GLuc-based biosensors provide a simple, sensitive, and cost-efficient platform for drug characterization and development.


Assuntos
Técnicas de Transferência de Energia por Ressonância de Bioluminescência/métodos , Luciferases/química , Luciferases/metabolismo , Bioensaio , Membrana Celular/metabolismo , Transferência de Energia , Células HEK293 , Humanos , Cinética , Ligantes , Ligação Proteica , Transporte Proteico , Receptores Acoplados a Proteínas G/metabolismo , Transdução de Sinais
3.
J Biol Chem ; 293(3): 876-892, 2018 01 19.
Artigo em Inglês | MEDLINE | ID: mdl-29146594

RESUMO

ß-Arrestins are key regulators and signal transducers of G protein-coupled receptors (GPCRs). The interaction between receptors and ß-arrestins is generally believed to require both receptor activity and phosphorylation by GPCR kinases. In this study, we investigated whether ß-arrestins are able to bind second messenger kinase-phosphorylated, but inactive receptors as well. Because heterologous phosphorylation is a common phenomenon among GPCRs, this mode of ß-arrestin activation may represent a novel mechanism of signal transduction and receptor cross-talk. Here we demonstrate that activation of protein kinase C (PKC) by phorbol myristate acetate, Gq/11-coupled GPCR, or epidermal growth factor receptor stimulation promotes ß-arrestin2 recruitment to unliganded AT1 angiotensin receptor (AT1R). We found that this interaction depends on the stability lock, a structure responsible for the sustained binding between GPCRs and ß-arrestins, formed by phosphorylated serine-threonine clusters in the receptor's C terminus and two conserved phosphate-binding lysines in the ß-arrestin2 N-domain. Using improved FlAsH-based serine-threonine clusters ß-arrestin2 conformational biosensors, we also show that the stability lock not only stabilizes the receptor-ß-arrestin interaction, but also governs the structural rearrangements within ß-arrestins. Furthermore, we found that ß-arrestin2 binds to PKC-phosphorylated AT1R in a distinct active conformation, which triggers MAPK recruitment and receptor internalization. Our results provide new insights into the activation of ß-arrestins and reveal their novel role in receptor cross-talk.


Assuntos
Proteínas Quinases Ativadas por Mitógeno/metabolismo , beta-Arrestinas/metabolismo , Angiotensina II/metabolismo , Animais , Células COS , Chlorocebus aethiops , Células HEK293 , Humanos , Immunoblotting , Microscopia Confocal , Fosforilação , Receptores Acoplados a Proteínas G/metabolismo
4.
J Biol Chem ; 292(46): 18862-18877, 2017 11 17.
Artigo em Inglês | MEDLINE | ID: mdl-28939768

RESUMO

Plasma membrane (PM) localization of Ras proteins is crucial for transmitting signals upon mitogen stimulation. Post-translational lipid modification of Ras proteins plays an important role in their recruitment to the PM. Electrostatic interactions between negatively charged PM phospholipids and basic amino acids found in K-Ras4B (K-Ras) but not in H-Ras are important for permanent K-Ras localization to the PM. Here, we investigated how acute depletion of negatively charged PM polyphosphoinositides (PPIns) from the PM alters the intracellular distribution and activity of K- and H-Ras proteins. PPIns depletion from the PM was achieved either by agonist-induced activation of phospholipase C ß or with a rapamycin-inducible system in which various phosphatidylinositol phosphatases were recruited to the PM. Redistribution of the two Ras proteins was monitored with confocal microscopy or with a recently developed bioluminescence resonance energy transfer-based approach involving fusion of the Ras C-terminal targeting sequences or the entire Ras proteins to Venus fluorescent protein. We found that PM PPIns depletion caused rapid translocation of K-Ras but not H-Ras from the PM to the Golgi. PM depletion of either phosphatidylinositol 4-phosphate (PtdIns4P) or PtdIns(4,5)P2 but not PtdIns(3,4,5)P3 was sufficient to evoke K-Ras translocation. This effect was diminished by deltarasin, an inhibitor of the Ras-phosphodiesterase interaction, or by simultaneous depletion of the Golgi PtdIns4P. The PPIns depletion decreased incorporation of [3H]leucine in K-Ras-expressing cells, suggesting that Golgi-localized K-Ras is not as signaling-competent as its PM-bound form. We conclude that PPIns in the PM are important regulators of K-Ras-mediated signals.


Assuntos
Membrana Celular/metabolismo , Complexo de Golgi/metabolismo , Fosfatos de Fosfatidilinositol/metabolismo , Proteínas Proto-Oncogênicas p21(ras)/metabolismo , Animais , Células COS , Chlorocebus aethiops , Difosfatos/metabolismo , Células HEK293 , Humanos , Transporte Proteico
5.
Biochim Biophys Acta ; 1861(3): 177-87, 2016 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-26692031

RESUMO

Deciphering many roles played by inositol lipids in signal transduction and membrane function demands experimental approaches that can detect their dynamic accumulation with subcellular accuracy and exquisite sensitivity. The former criterion is met by imaging of fluorescence biosensors in living cells, whereas the latter is facilitated by biochemical measurements from populations. Here, we introduce BRET-based biosensors able to detect rapid changes in inositol lipids in cell populations with both high sensitivity and subcellular resolution in a single, convenient assay. We demonstrate robust and sensitive measurements of PtdIns4P, PtdIns(4,5)P2 and PtdIns(3,4,5)P3 dynamics, as well as changes in cytoplasmic Ins(1,4,5)P3 levels. Measurements were made during either experimental activation of lipid degradation, or PI 3-kinase and phospholipase C mediated signal transduction. Our results reveal a previously unappreciated synthesis of PtdIns4P that accompanies moderate activation of phospholipase C signaling downstream of both EGF and muscarinic M3 receptor activation. This signaling-induced PtdIns4P synthesis relies on protein kinase C, and implicates a feedback mechanism in the control of inositol lipid metabolism during signal transduction.


Assuntos
Técnicas Biossensoriais , Carbacol/farmacologia , Fator de Crescimento Epidérmico/farmacologia , Receptores ErbB/agonistas , Transferência Ressonante de Energia de Fluorescência , Agonistas Muscarínicos/farmacologia , Fosfatos de Fosfatidilinositol/metabolismo , Proteína Quinase C/metabolismo , Receptores Muscarínicos/efeitos dos fármacos , Transdução de Sinais/efeitos dos fármacos , Animais , Células COS , Chlorocebus aethiops , Ativação Enzimática , Receptores ErbB/genética , Receptores ErbB/metabolismo , Retroalimentação Fisiológica , Células HEK293 , Humanos , Hidrólise , Inositol 1,4,5-Trifosfato/metabolismo , Cinética , Lipólise , Fosfatidilinositol 3-Quinase/metabolismo , Fosfatidilinositol 4,5-Difosfato/metabolismo , Receptor Muscarínico M3 , Receptores Muscarínicos/genética , Receptores Muscarínicos/metabolismo , Proteínas Recombinantes de Fusão/metabolismo , Transfecção , Fosfolipases Tipo C/metabolismo , Regulação para Cima
6.
Mol Pharmacol ; 87(6): 972-81, 2015 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-25804845

RESUMO

Biased agonism on the type I angiotensin receptor (AT1-R) can achieve different outcomes via activation of G protein-dependent and -independent cellular responses. In this study, we investigated whether the biased activation of AT1-R can lead to different regulation and intracellular processing of the receptor. We analyzed ß-arrestin binding, endocytosis, and subsequent trafficking steps, such as early and late phases of recycling of AT1-R in human embryonic kidney 293 cells expressing wild-type or biased mutant receptors in response to different ligands. We used Renilla luciferase-tagged receptors and yellow fluorescent protein-tagged ß-arrestin2, Rab5, Rab7, and Rab11 proteins in bioluminescence resonance energy transfer measurements to follow the fate of the receptor after stimulation. We found that not only is the signaling of the receptor different upon using selective ligands, but the fate within the cells is also determined by the type of the stimulation. ß-arrestin binding and the internalization kinetics of the angiotensin II-stimulated AT1-R differed from those stimulated by the biased agonists. Similarly, angiotensin II-stimulated wild-type AT1-R showed differences compared with a biased mutant AT1-R (DRY/AAY AT1-R) with regards to ß-arrestin binding and endocytosis. We found that the differences in the internalization kinetics of the receptor in response to biased agonist stimulation are due to the differences in plasma membrane phosphatidylinositol 4,5-bisphosphate depletion. Moreover, the stability of the ß-arrestin binding is a major determinant of the later fate of the internalized AT1-R receptor.


Assuntos
Receptor Tipo 1 de Angiotensina/metabolismo , 1-Fosfatidilinositol 4-Quinase/antagonistas & inibidores , Angiotensina II/farmacologia , Arrestinas/genética , Arrestinas/metabolismo , Técnicas de Transferência de Energia por Ressonância de Bioluminescência , Membrana Celular/metabolismo , Endocitose/efeitos dos fármacos , Subunidades alfa Gq-G11 de Proteínas de Ligação ao GTP/metabolismo , Proteínas de Fluorescência Verde/genética , Células HEK293 , Humanos , Hidrólise , Ligantes , Luciferases de Renilla/genética , Fosfatidilinositol 4,5-Difosfato/metabolismo , Fosfoinositídeo Fosfolipase C/genética , Fosfoinositídeo Fosfolipase C/metabolismo , Inibidores de Fosfoinositídeo-3 Quinase , Receptor Tipo 1 de Angiotensina/agonistas , Receptor Tipo 1 de Angiotensina/genética , beta-Arrestinas
7.
Kidney Int ; 88(5): 1070-8, 2015 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-26131744

RESUMO

Nephrogenic syndrome of inappropriate antidiuresis (NSIAD) is a recently discovered rare disease caused by gain-of-function mutations of the V2 vasopressin receptor gene, AVPR2. To date, mutations of Phe229 and Arg137 have been identified as gain-of-function in the V2 vasopressin receptor (V2R). These receptor mutations lead to hyponatremia, which may lead to clinical symptoms in infants. Here we present a newly identified I130N substitution in exon 2 of the V2R gene in a family, causing NSIAD. This I130N mutation resulted in constitutive activity of the V2R with constitutive cyclic adenosine monophosphate (cAMP) generation in HEK293 cells. This basal activity could be blocked by the inverse agonist tolvaptan and arginine-vasopressin stimulation enhanced the cAMP production of I130N-V2R. The mutation causes a biased receptor conformation as the basal cAMP generation activity of I130N does not lead to interaction with ß-arrestin. The constitutive activity of the mutant receptor caused constitutive dynamin-dependent and ß-arrestin-independent internalization. The inhibition of basal internalization using dominant-negative dynamin resulted in an increased cell surface expression. In contrast to the constitutive internalization, agonist-induced endocytosis was ß-arrestin dependent. Thus, tolvaptan could be used for treatment of hyponatremia in patients with NSIAD who carry the I130N-V2R mutation.


Assuntos
AMP Cíclico/biossíntese , Doenças Genéticas Ligadas ao Cromossomo X/genética , Hiponatremia/genética , Síndrome de Secreção Inadequada de HAD/genética , Receptores de Vasopressinas/genética , Adulto , Antagonistas dos Receptores de Hormônios Antidiuréticos/farmacologia , Arrestinas/metabolismo , Benzazepinas/farmacologia , Membrana Celular/química , Análise Mutacional de DNA , Dinaminas/metabolismo , Endocitose/efeitos dos fármacos , Éxons , Feminino , Células HEK293 , Humanos , Hiponatremia/tratamento farmacológico , Masculino , Mutação , Linhagem , Receptores de Vasopressinas/análise , Receptores de Vasopressinas/metabolismo , Tolvaptan , beta-Arrestinas
8.
J Cell Sci ; 125(Pt 9): 2185-97, 2012 May 01.
Artigo em Inglês | MEDLINE | ID: mdl-22357943

RESUMO

Receptor endocytosis plays an important role in regulating the responsiveness of cells to specific ligands. Phosphatidylinositol 4,5-bisphosphate [PtdIns(4,5)P(2)] has been shown to be crucial for endocytosis of some cell surface receptors, such as EGF and transferrin receptors, but its role in G-protein-coupled receptor internalization has not been investigated. By using luciferase-labeled type 1 angiotensin II (AT1R), type 2C serotonin (5HT2CR) or ß(2) adrenergic (ß2AR) receptors and fluorescently tagged proteins (ß-arrestin-2, plasma-membrane-targeted Venus, Rab5) we were able to follow the sequence of molecular interactions along the endocytic route of the receptors in HEK293 cells using the highly sensitive method of bioluminescence resonance energy transfer and confocal microscopy. To study the role of plasma membrane PtdIns(4,5)P(2) in receptor endocytosis, we used our previously developed rapamycin-inducible heterodimerization system, in which the recruitment of a 5-phosphatase domain to the plasma membrane degrades PtdIns(4,5)P(2). Here we show that ligand-induced interaction of AT1, 5HT2C and ß(2)A receptors with ß-arrestin-2 was unaffected by PtdIns(4,5)P(2) depletion. However, trafficking of the receptors to Rab5-positive early endosomes was completely abolished in the absence of PtdIns(4,5)P(2). Remarkably, removal of the receptors from the plasma membrane was reduced but not eliminated after PtdIns(4,5)P(2) depletion. Under these conditions, stimulated AT1 receptors clustered along the plasma membrane, but did not enter the cells. Our data suggest that in the absence of PtdIns(4,5)P(2), these receptors move into clathrin-coated membrane structures, but these are not cleaved efficiently and hence cannot reach the early endosomal compartment.


Assuntos
Endocitose/fisiologia , Fosfatidilinositol 4,5-Difosfato/deficiência , Receptor Tipo 1 de Angiotensina/metabolismo , Receptores Adrenérgicos beta 2/metabolismo , Receptores 5-HT2 de Serotonina/metabolismo , Arrestinas/metabolismo , Técnicas de Transferência de Energia por Ressonância de Bioluminescência , Membrana Celular/efeitos dos fármacos , Membrana Celular/metabolismo , Membrana Celular/ultraestrutura , Vesículas Revestidas por Clatrina/metabolismo , Endocitose/efeitos dos fármacos , Endossomos/efeitos dos fármacos , Endossomos/metabolismo , Endossomos/ultraestrutura , Genes Reporter , Células HEK293 , Humanos , Luciferases , Microscopia Confocal , Sirolimo/farmacologia , beta-Arrestina 2 , beta-Arrestinas , Proteínas rab5 de Ligação ao GTP/metabolismo
9.
Sci Signal ; 17(842): eadi0934, 2024 Jun 25.
Artigo em Inglês | MEDLINE | ID: mdl-38917219

RESUMO

The stabilization of different active conformations of G protein-coupled receptors is thought to underlie the varying efficacies of biased and balanced agonists. Here, profiling the activation of signal transducers by angiotensin II type 1 receptor (AT1R) agonists revealed that the extent and kinetics of ß-arrestin binding exhibited substantial ligand-dependent differences, which were lost when receptor internalization was inhibited. When AT1R endocytosis was prevented, even weak partial agonists of the ß-arrestin pathway acted as full or near-full agonists, suggesting that receptor conformation did not exclusively determine ß-arrestin recruitment. The ligand-dependent variance in ß-arrestin translocation was much larger at endosomes than at the plasma membrane, showing that ligand efficacy in the ß-arrestin pathway was spatiotemporally determined. Experimental investigations and mathematical modeling demonstrated how multiple factors concurrently shaped the effects of agonists on endosomal receptor-ß-arrestin binding and thus determined the extent of functional selectivity. Ligand dissociation rate and G protein activity had particularly strong, internalization-dependent effects on the receptor-ß-arrestin interaction. We also showed that endocytosis regulated the agonist efficacies of two other receptors with sustained ß-arrestin binding: the V2 vasopressin receptor and a mutant ß2-adrenergic receptor. In the absence of endocytosis, the agonist-dependent variance in ß-arrestin2 binding was markedly diminished. Our results suggest that endocytosis determines the spatiotemporal bias in GPCR signaling and can aid in the development of more efficacious, functionally selective compounds.


Assuntos
Endocitose , Receptor Tipo 1 de Angiotensina , Transdução de Sinais , beta-Arrestinas , Endocitose/fisiologia , Humanos , Receptor Tipo 1 de Angiotensina/metabolismo , Receptor Tipo 1 de Angiotensina/genética , beta-Arrestinas/metabolismo , beta-Arrestinas/genética , Células HEK293 , Receptores de Vasopressinas/metabolismo , Receptores de Vasopressinas/genética , Receptores Adrenérgicos beta 2/metabolismo , Receptores Adrenérgicos beta 2/genética , Endossomos/metabolismo , Receptores Acoplados a Proteínas G/metabolismo , Receptores Acoplados a Proteínas G/genética , Animais , Ligantes , Ligação Proteica , Transporte Proteico
10.
Cell Rep ; 43(5): 114241, 2024 May 28.
Artigo em Inglês | MEDLINE | ID: mdl-38758647

RESUMO

The binding and function of ß-arrestins are regulated by specific phosphorylation motifs present in G protein-coupled receptors (GPCRs). However, the exact arrangement of phosphorylated amino acids responsible for establishing a stable interaction remains unclear. We employ a 1D sequence convolution model trained on GPCRs with established ß-arrestin-binding properties. With this approach, amino acid motifs characteristic of GPCRs that form stable interactions with ß-arrestins can be identified, a pattern that we name "arreSTick." Intriguingly, the arreSTick pattern is also present in numerous non-receptor proteins. Using proximity biotinylation assay and mass spectrometry analysis, we demonstrate that the arreSTick motif controls the interaction between many non-receptor proteins and ß-arrestin2. The HIV-1 Tat-specific factor 1 (HTSF1 or HTATSF1), a nuclear transcription factor, contains the arreSTick pattern, and its subcellular localization is influenced by ß-arrestin2. Our findings unveil a broader role for ß-arrestins in phosphorylation-dependent interactions, extending beyond GPCRs to encompass non-receptor proteins as well.


Assuntos
Motivos de Aminoácidos , Ligação Proteica , beta-Arrestinas , Fosforilação , Humanos , beta-Arrestinas/metabolismo , Células HEK293 , beta-Arrestina 2/metabolismo , Sequência de Aminoácidos , Estabilidade Proteica
11.
J Biol Chem ; 287(12): 9090-9, 2012 Mar 16.
Artigo em Inglês | MEDLINE | ID: mdl-22291018

RESUMO

Initiation and termination of signaling of the type I angiotensin receptor (AT(1)-R) can lead to dynamic changes in its localization in plasma membrane microdomains. Several markers were recently developed to investigate membrane microdomains. Here, we used several YFP-labeled fusion constructs (i.e. raft or non-raft plasma membrane markers) to analyze the agonist-induced changes in compartmentalization of AT(1)-R, including internalization or lateral movement between plasma membrane compartments in response to stimulation using bioluminescence resonance energy transfer measurements. Our data demonstrate that angiotensin II (AngII) stimulus changes the microdomain localization of wild type or mutated (DRY → AAY or TSTS → AAAA) AT(1)-Rs co-expressed with the fluorescent probes in HEK293 cells. The comparison of the trafficking of AT(1)-R upon AngII stimulus with those of [Sar(1),Ile(8)]AngII or [Sar(1),Ile(4),Ile(8)]AngII stimulus revealed different types of changes, depending on the nature of the ligand. The observed changes in receptor compartmentalization of the AT(1)-R are strikingly different from those of 5HT-2C and EGF receptors, which demonstrate the usefulness of the bioluminescence resonance energy transfer-based measurements in the investigation of receptor trafficking in the plasma membrane in living cell experiments.


Assuntos
Técnicas Biossensoriais/métodos , Medições Luminescentes/métodos , Microdomínios da Membrana/metabolismo , Receptor Tipo 1 de Angiotensina/química , Receptor Tipo 1 de Angiotensina/metabolismo , Angiotensina II/metabolismo , Proteínas de Bactérias/química , Proteínas de Bactérias/genética , Proteínas de Bactérias/metabolismo , Linhagem Celular , Transferência de Energia , Humanos , Proteínas Luminescentes/química , Proteínas Luminescentes/genética , Proteínas Luminescentes/metabolismo , Microdomínios da Membrana/química , Microdomínios da Membrana/genética , Microscopia Confocal , Ligação Proteica , Transporte Proteico , Receptor Tipo 1 de Angiotensina/genética , Proteínas Recombinantes de Fusão/química , Proteínas Recombinantes de Fusão/genética , Proteínas Recombinantes de Fusão/metabolismo
12.
J Biol Chem ; 287(37): 31540-50, 2012 Sep 07.
Artigo em Inglês | MEDLINE | ID: mdl-22787147

RESUMO

In the vascular system angiotensin II (Ang II) causes vasoconstriction via the activation of type 1 angiotensin receptors. Earlier reports have shown that in cellular expression systems diacylglycerol produced during type 1 angiotensin receptor signaling can be converted to 2-arachidonoylglycerol, an important endocannabinoid. Because activation of CB(1) cannabinoid receptors (CB(1)R) induces vasodilation and reduces blood pressure, we have tested the hypothesis that Ang II-induced 2-arachidonoylglycerol release can modulate its vasoconstrictor action in vascular tissue. Rat and mouse skeletal muscle arterioles and mouse saphenous arteries were isolated, pressurized, and subjected to microangiometry. Vascular expression of CB(1)R was demonstrated using Western blot and RT-PCR. In accordance with the functional relevance of these receptors WIN55212, a CB(1)R agonist, caused vasodilation, which was absent in CB(1)R knock-out mice. Inhibition of CB(1)Rs using O2050, a neutral antagonist, enhanced the vasoconstrictor effect of Ang II in wild type but not in CB(1)R knock-out mice. Inverse agonists of CB(1)R (SR141716 and AM251) and inhibition of diacylglycerol lipase using tetrahydrolipstatin also augmented the Ang II-induced vasoconstriction, suggesting that endocannabinoid release modulates this process via CB(1)R activation. This effect was independent of nitric-oxide synthase activity and endothelial function. These data demonstrate that Ang II stimulates vascular endocannabinoid formation, which attenuates its vasoconstrictor effect, suggesting that endocannabinoid release from the vascular wall and CB(1)R activation reduces the vasoconstrictor and hypertensive effects of Ang II.


Assuntos
Angiotensina II/metabolismo , Artérias/metabolismo , Endocanabinoides/metabolismo , Endotélio Vascular/metabolismo , Músculo Esquelético/metabolismo , Receptor CB1 de Canabinoide/metabolismo , Vasoconstrição/fisiologia , Analgésicos/farmacologia , Angiotensina II/genética , Animais , Benzoxazinas/farmacologia , Endocanabinoides/antagonistas & inibidores , Endocanabinoides/genética , Hipertensão/genética , Hipertensão/metabolismo , Masculino , Camundongos , Camundongos Knockout , Morfolinas/farmacologia , Músculo Esquelético/irrigação sanguínea , Naftalenos/farmacologia , Piperidinas/farmacologia , Pirazóis/farmacologia , Ratos , Ratos Wistar , Receptor CB1 de Canabinoide/genética , Rimonabanto , Vasoconstrição/efeitos dos fármacos
13.
Biomedicines ; 11(11)2023 Nov 09.
Artigo em Inglês | MEDLINE | ID: mdl-38002004

RESUMO

Angiotensin II (Ang II) is a hormone with much more complex actions than is typical for other agonists with heterotrimeric G protein-coupled receptors (GPCRs) [...].

14.
Front Endocrinol (Lausanne) ; 14: 1173601, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37293495

RESUMO

The diluting and concentrating function of the kidney plays a crucial role in regulating the water homeostasis of the body. This function is regulated by the antidiuretic hormone, arginine vasopressin through the type 2 vasopressin receptor (V2R), allowing the body to adapt to periods of water load or water restriction. Loss-of-function mutations of the V2R cause X-linked nephrogenic diabetes insipidus (XNDI), which is characterized by polyuria, polydipsia, and hyposthenuria. Gain-of-function mutations of the V2R lead to nephrogenic syndrome of inappropriate antidiuresis disease (NSIAD), which results in hyponatremia. Various mechanisms may be responsible for the impaired receptor functions, and this review provides an overview of recent findings about the potential therapeutic interventions in the light of the current experimental data.


Assuntos
Receptores de Vasopressinas , Vasopressinas , Receptores de Vasopressinas/genética , Vasopressinas/genética , Mutação , Água , Biologia Molecular
15.
J Biol Chem ; 286(7): 5319-27, 2011 Feb 18.
Artigo em Inglês | MEDLINE | ID: mdl-21062747

RESUMO

Previous studies have demonstrated that molecules of the Ras signaling pathway are present in intracellular compartments, including early endosomes, the endoplasmic reticulum (ER), and the Golgi, and suggested that mitogens can regulate Ras activity in these endomembranes. In this study, we investigated the effect of angiotensin II (AngII) on intracellular Ras activity in living HEK293 cells expressing angiotensin type 1 receptors (AT(1)-Rs) using newly developed bioluminescence resonance energy transfer biosensors. To investigate the subcellular localization of AngII-induced Ras activation, we targeted our probes to various intracellular compartments, such as the trans-Golgi network (TGN), the ER, and early endosomes. Using these biosensors, we detected AngII-induced Ras activation in the TGN and ER, but not in early endosomes. In cells expressing a cytoplasmic tail deletion AT(1)-R mutant, the AngII-induced response was enhanced, suggesting that receptor internalization and ß-arrestin binding are not required for AngII-induced Ras activation in endomembranes. Although we were able to demonstrate EGF-induced Ras activation in the plasma membrane and TGN, but not in other endomembranes, AG1478, an EGF receptor inhibitor, did not affect the AngII-induced response, suggesting that the latter is independent of EGF receptor transactivation. AngII was unable to stimulate Ras activity in the studied compartments in cells expressing a G protein coupling-deficient AT(1)-R mutant ((125)DRY(127) to (125)AAY(127)). These data suggest that AngII can stimulate Ras activity in the TGN and ER with a G protein-dependent mechanism, which does not require ß-arrestin-mediated signaling, receptor internalization, and EGF receptor transactivation.


Assuntos
Angiotensina II/análise , Técnicas Biossensoriais/métodos , Retículo Endoplasmático/metabolismo , Medições Luminescentes/métodos , Proteína Oncogênica p21(ras)/metabolismo , Receptor Tipo 1 de Angiotensina/metabolismo , Rede trans-Golgi/metabolismo , Angiotensina II/metabolismo , Arrestinas/genética , Arrestinas/metabolismo , Retículo Endoplasmático/genética , Ativação Enzimática/efeitos dos fármacos , Ativação Enzimática/genética , Inibidores Enzimáticos/farmacologia , Receptores ErbB/genética , Receptores ErbB/metabolismo , Células HEK293 , Humanos , Proteína Oncogênica p21(ras)/genética , Quinazolinas , Receptor Tipo 1 de Angiotensina/genética , Transdução de Sinais/efeitos dos fármacos , Transdução de Sinais/genética , Tirfostinas/farmacologia , beta-Arrestinas , Rede trans-Golgi/genética
16.
Front Pharmacol ; 13: 811836, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35153784

RESUMO

The urine concentrating function of the kidney is essential to maintain the water homeostasis of the human body. It is mainly regulated by the arginine-vasopressin (AVP), which targets the type 2 vasopressin receptor (V2R) in the kidney. The inability of V2R to respond to AVP stimulation leads to decreased urine concentration and congenital nephrogenic diabetes insipidus (NDI). NDI is characterized by polyuria, polydipsia, and hyposthenuria. In this study, we identified a point mutation (S127F) in the AVPR2 gene of an NDI patient, and we characterized the impaired function of the V2R mutant in HEK293 cells. Based on our data, the S127F-V2R mutant is almost exclusively located intracellularly in the endoplasmic reticulum (ER), and very few receptors were detected at the cell surface, where the receptor can bind to AVP. The overexpressed S127F-V2R mutant receptor has negligible cAMP generation capability compared to the wild-type receptor in response to AVP stimulation. Since certain misfolded mutant proteins, that are retained in the ER, can be rescued by pharmacological chaperones, we examined the potential rescue effects of two pharmacochaperones on the S127F-V2R. We found that pretreatment with both tolvaptan (an established V2R inverse agonist) and MCF14 compound (a cell-permeable high-affinity agonist for the V2R) were capable of partially restoring the cAMP generating function of the receptor in response to vasopressin stimulation. According to our data, both cell permeant agonists and antagonists can function as pharmacochaperones, and serve as the starting compounds to develop medicines for patients carrying the S127F mutation.

17.
Trends Cell Biol ; 16(7): 351-61, 2006 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-16793271

RESUMO

Phosphoinositides account for only a tiny fraction of cellular phospholipids but are extremely important in the regulation of the recruitment and activity of many signaling proteins in cellular membranes. Phosphatidylinositol (PtdIns) 4-kinases generate PtdIns 4-phosphate, the precursor of important regulatory phosphoinositides but also an emerging regulatory molecule in its own right. The four mammalian PtdIns 4-kinases regulate a diverse array of signaling events, as well as vesicular trafficking and lipid transport, but the mechanisms by which their lipid product PtdIns 4-phosphate controls these processes is only beginning to unfold.


Assuntos
1-Fosfatidilinositol 4-Quinase/fisiologia , Membrana Celular/fisiologia , 1-Fosfatidilinositol 4-Quinase/química , 1-Fosfatidilinositol 4-Quinase/genética , Animais , Isoenzimas , Metabolismo dos Lipídeos , Fosfatos de Fosfatidilinositol/metabolismo , Transdução de Sinais , Vesículas Transportadoras/metabolismo
18.
Front Endocrinol (Lausanne) ; 12: 714561, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34484125

RESUMO

ß-arrestins are partners of the G protein-coupled receptors (GPCRs), regulating their intracellular trafficking and signaling. Development of biased GPCR agonists, selectively targeting either G protein or ß-arrestin pathways, are in the focus of interest due to their therapeutic potential in different pathological conditions. The CB2 cannabinoid receptor (CB2R) is a GPCR involved in various functions in the periphery and the central nervous system. Two common occurring variants of CB2R, harboring Q63R or L133I missense mutations, have been implicated in the development of a diverse set of disorders. To evaluate the effect of these mutations, we characterized the binding profile of these mutant CB2 receptors to G proteins and ß-arrestin2. Although their ability to inhibit cAMP signaling was similar, the Q63R mutant had increased, whereas the L133I mutant receptor had decreased ß-arrestin2 binding. In line with these observations, the variants also had altered intracellular trafficking. Our results show that two common variants of the CB2 receptor have biased signaling properties, which may contribute to the pathogenesis of the associated disorders and may offer CB2R as a target for further development of biased receptor activation strategies.


Assuntos
Mutação de Sentido Incorreto , Receptor CB2 de Canabinoide/metabolismo , beta-Arrestinas/metabolismo , Células HEK293 , Humanos , Ligação Proteica , Transporte Proteico , Receptor CB2 de Canabinoide/química , Receptor CB2 de Canabinoide/genética , beta-Arrestinas/genética
19.
Cells ; 10(12)2021 12 15.
Artigo em Inglês | MEDLINE | ID: mdl-34944046

RESUMO

Activation of the type I angiotensin receptor (AT1-R) in vascular smooth muscle cells (VSMCs) plays a crucial role in the regulation of blood pressure; however, it is also responsible for the development of pathological conditions such as vascular remodeling, hypertension and atherosclerosis. Stimulation of the VSMC by angiotensin II (AngII) promotes a broad variety of biological effects, including gene expression changes. In this paper, we have taken an integrated approach in which an analysis of AngII-induced gene expression changes has been combined with the use of small-molecule inhibitors and lentiviral-based gene silencing, to characterize the mechanism of signal transduction in response to AngII stimulation in primary rat VSMCs. We carried out Affymetrix GeneChip experiments to analyze the effects of AngII stimulation on gene expression; several genes, including DUSP5, DUSP6, and DUSP10, were identified as upregulated genes in response to stimulation. Since various dual-specificity MAPK phosphatase (DUSP) enzymes are important in the regulation of mitogen-activated protein kinase (MAPK) signaling pathways, these genes have been selected for further analysis. We investigated the kinetics of gene-expression changes and the possible signal transduction processes that lead to altered expression changes after AngII stimulation. Our data shows that the upregulated genes can be stimulated through multiple and synergistic signal transduction pathways. We have also found in our gene-silencing experiments that epidermal growth factor receptor (EGFR) transactivation is not critical in the AngII-induced expression changes of the investigated genes. Our data can help us understand the details of AngII-induced long-term effects and the pathophysiology of AT1-R. Moreover, it can help to develop potential interventions for those symptoms that are induced by the over-functioning of this receptor, such as vascular remodeling, cardiac hypertrophy or atherosclerosis.


Assuntos
Regulação Enzimológica da Expressão Gênica , Fosfatases da Proteína Quinase Ativada por Mitógeno/genética , Músculo Liso Vascular/citologia , Miócitos de Músculo Liso/enzimologia , Receptor Tipo 1 de Angiotensina/metabolismo , Angiotensina II/farmacologia , Animais , Linhagem Celular , Fator de Crescimento Epidérmico/farmacologia , Receptores ErbB/metabolismo , Regulação Enzimológica da Expressão Gênica/efeitos dos fármacos , Cinética , Lentivirus/metabolismo , Masculino , Metaloproteinases da Matriz/metabolismo , Fosfatases da Proteína Quinase Ativada por Mitógeno/metabolismo , Miócitos de Músculo Liso/efeitos dos fármacos , Inibidores de Proteínas Quinases/farmacologia , RNA Interferente Pequeno/metabolismo , Ratos Wistar , Transdução de Sinais/efeitos dos fármacos , Fatores de Tempo , Regulação para Cima/genética
20.
BMC Cell Biol ; 10: 67, 2009 Sep 21.
Artigo em Inglês | MEDLINE | ID: mdl-19769794

RESUMO

BACKGROUND: Phosphatidylinositol 4,5-bisphosphate [PtdIns(4,5)P2] is a critically important regulatory phospholipid found in the plasma membrane of all eukaryotic cells. In addition to being a precursor of important second messengers, PtdIns(4,5)P2 also regulates ion channels and transporters and serves the endocytic machinery by recruiting clathrin adaptor proteins. Visualization of the localization and dynamic changes in PtdIns(4,5)P2 levels in living cells is critical to understanding the biology of PtdIns(4,5)P2. This has been mostly achieved with the use of the pleckstrin homology (PH) domain of PLCdelta1 fused to GFP. Here we report on a comparative analysis of several recently-described yeast PH domains as well as the mammalian Tubby domain to evaluate their usefulness as PtdIns(4,5)P2 imaging tools. RESULTS: All of the yeast PH domains that have been previously shown to bind PtdIns(4,5)P2 showed plasma membrane localization but only a subset responded to manipulations of plasma membrane PtdIns(4,5)P2. None of these domains showed any advantage over the PLCdelta1PH-GFP reporter and were compromised either in their expression levels, nuclear localization or by causing peculiar membrane structures. In contrast, the Tubby domain showed high membrane localization consistent with PtdIns(4,5)P2 binding and displayed no affinity for the soluble headgroup, Ins(1,4,5)P3. Detailed comparison of the Tubby and PLCdelta1PH domains showed that the Tubby domain has a higher affinity for membrane PtdIns(4,5)P2 and therefore displays a lower sensitivity to report on changes of this lipid during phospholipase C activation. CONCLUSION: These results showed that both the PLCdelta1PH-GFP and the GFP-Tubby domain are useful reporters of PtdIns(4,5)P2 changes in the plasma membrane, with distinct advantages and disadvantages. While the PLCdelta1PH-GFP is a more sensitive reporter, its Ins(1,4,5)P3 binding may compromise its accuracy to measure PtdIns(4,5)P2 changes. The Tubby domain is more accurate to report on PtdIns(4,5)P2 but its higher affinity and lower sensitivity may limit its utility when phospholipase C activation is only moderate. These studies also demonstrated that similar changes in PtdIns(4,5)P2 levels in the plasma membrane can differentially regulate multiple effectors if they display different affinities to PtdIns(4,5)P2.


Assuntos
Fosfatidilinositol 4,5-Difosfato/metabolismo , Proteínas/química , Proteínas/metabolismo , Animais , Sinalização do Cálcio , Linhagem Celular , Sobrevivência Celular , Chlorocebus aethiops , Ativação Enzimática , Genes Reporter , Humanos , Estrutura Terciária de Proteína , Transporte Proteico , Proteínas/genética
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA