RESUMO
Multisystem inflammatory syndrome in children (MIS-C) is a severe, hyperinflammatory disease that occurs after exposure to severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2). The underlying immune pathology of MIS-C is incompletely understood, with limited data comparing MIS-C to clinically similar paediatric febrile diseases at presentation. SARS-CoV-2-specific T cell responses have not been compared in these groups to assess whether there is a T cell profile unique to MIS-C. In this study, we measured inflammatory cytokine concentration and SARS-CoV-2-specific humoral immunity and T cell responses in children with fever and suspected MIS-C at presentation (n = 83) where MIS-C was ultimately confirmed (n = 58) or another diagnosis was made (n = 25) and healthy children (n = 91). Children with confirmed MIS-C exhibited distinctly elevated serum IL-10, IL-6, and CRP at presentation. No differences were detected in SARS-CoV-2 spike IgG serum concentration, neutralisation capacity, antibody dependant cellular phagocytosis, antibody dependant cellular cytotoxicity or SARS-CoV-2-specific T cell frequency between the groups. Healthy SARS-CoV-2 seropositive children had a higher proportion of polyfunctional SARS-CoV-2-specific CD4+ T cells compared to children with MIS-C and those with other inflammatory or infectious diagnoses, who both presented a largely monofunctional SARS-CoV-2-specific CD4+ T cell profile. Treatment with steroids and/or intravenous immunoglobulins resulted in rapid reduction of inflammatory cytokines but did not affect the SARS-CoV-2-specific IgG or CD4+ T cell responses in MIS-C. In these data, MIS-C had a unique cytokine profile but not a unique SARS-CoV-2 specific humoral or T cell cytokine response.
Assuntos
COVID-19 , Doenças do Tecido Conjuntivo , Síndrome de Resposta Inflamatória Sistêmica , Humanos , Criança , SARS-CoV-2 , Citocinas , Imunoglobulina G , Febre , Anticorpos AntiviraisRESUMO
BACKGROUND: Although primary maternal cytomegalovirus infections are associated with higher risk of in utero transmission, most fetal infections worldwide result from nonprimary maternal infections. Antibodies directed at glycoprotein B (gB) and the gH/gL/pUL128-130-131 pentamer can neutralize virus, and higher levels of antibody directed at several particular pentamer epitopes defined by monoclonal antibodies (mAbs) are associated with reduced risk of fetal cytomegalovirus (CMV) transmission during primary maternal infection. This had not been explored in maternal nonprimary infection. METHODS: In a setting where most maternal CMV infections are nonprimary, 42 mothers of infants with congenital CMV infections (transmitters) were compared to 75 CMV-seropositive mothers whose infants were CMV-uninfected (nontransmitters). Control infants were matched by sex, maternal human immunodeficiency virus (HIV) status, and gestational age. We measured the ability of maternal antibodies to block 3 key pentameric epitopes: one in the gH subunit, another straddling UL130/UL131, and the third straddling gH/gL/UL128/UL130. We tested if levels of antibodies directed at these epitopes were higher in nontransmitters compared to transmitters. RESULTS: Levels of all 3 putatively protective pentamer-directed antibodies were significantly higher in transmitters compared to nontransmitters. In contrast, antibodies targeting an epitope on gB were not different. Total antibody specific for pentamer and for gB were also higher in transmitters. CONCLUSIONS: We found no evidence that higher levels of any CMV-specific antibodies were associated with reduced risk of congenital CMV infection in nonprimary maternal infection. Instead, we found higher maternal antibody targeting epitopes on CMV pentamer in transmitters than nontransmitters, providing evidence for antibody boosting but not protection.
Assuntos
Infecções por Citomegalovirus , Complicações Infecciosas na Gravidez , Anticorpos Neutralizantes , Anticorpos Antivirais , Citomegalovirus , Feminino , Humanos , Lactente , GravidezRESUMO
SARS-CoV-2 infection in children typically results in asymptomatic or mild disease. There is a paucity of studies on SARS-CoV-2 antiviral immunity in African children. We investigated SARS-CoV-2-specific T cell responses in 71 unvaccinated asymptomatic South African children who were seropositive or seronegative for SARS-CoV-2. SARS-CoV-2-specific CD4+ T cell responses were detectable in 83% of seropositive and 60% of seronegative children. Although the magnitude of the CD4+ T cell response did not differ significantly between the two groups, their functional profiles were distinct, with SARS-CoV-2 seropositive children exhibiting a higher proportion of polyfunctional T cells compared to their seronegative counterparts. The frequency of SARS-CoV-2-specific CD4+ T cells in seronegative children was associated with the endemic human coronavirus (HCoV) HKU1 IgG response. Overall, the presence of SARS-CoV-2-responding T cells in seronegative children may result from cross-reactivity to endemic coronaviruses and could contribute to the relative protection from disease observed in SARS-CoV-2-infected children.
RESUMO
We report the safety and immunogenicity of fractional and full dose Ad26.COV2.S and BNT162b2 in an open label phase 2 trial of participants previously vaccinated with a single dose of Ad26.COV2.S, with 91.4% showing evidence of previous SARS-CoV-2 infection. A total of 286 adults (with or without HIV) were enrolled >4 months after an Ad26.COV2.S prime and randomized 1:1:1:1 to receive either a full or half-dose booster of Ad26.COV2.S or BNT162b2 vaccine. B cell responses (binding, neutralization and antibody dependent cellular cytotoxicity-ADCC), and spike-specific T-cell responses were evaluated at baseline, 2, 12 and 24 weeks post-boost. Antibody and T-cell immunity targeting the Ad26 vector was also evaluated. No vaccine-associated serious adverse events were recorded. The full- and half-dose BNT162b2 boosted anti-SARS-CoV-2 binding antibody levels (3.9- and 4.5-fold, respectively) and neutralizing antibody levels (4.4- and 10-fold). Binding and neutralizing antibodies following half-dose Ad26.COV2.S were not significantly boosted. Full-dose Ad26.COV2.S did not boost binding antibodies but slightly enhanced neutralizing antibodies (2.1-fold). ADCC was marginally increased only after a full-dose BNT162b2. T-cell responses followed a similar pattern to neutralizing antibodies. Six months post-boost, antibody and T-cell responses had waned to baseline levels. While we detected strong anti-vector immunity, there was no correlation between anti-vector immunity in Ad26.COV2.S recipients and spike-specific neutralizing antibody or T-cell responses post-Ad26.COV2.S boosting. Overall, in the context of hybrid immunity, boosting with heterologous full- or half-dose BNT162b2 mRNA vaccine demonstrated superior immunogenicity 2 weeks post-vaccination compared to homologous Ad26.COV2.S, though rapid waning occurred by 12 weeks post-boost. Trial Registration: The study has been registered to the South African National Clinical Trial Registry (SANCTR): DOH-27-012022-7841. The approval letter from SANCTR has been provided in the up-loaded documents.
RESUMO
The severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) Omicron BA.4 and BA.5 variants caused major waves of infections. Here, we assess the sensitivity of BA.4 to binding, neutralization, and antibody-dependent cellular cytotoxicity (ADCC) potential, measured by FcγRIIIa signaling, in convalescent donors infected with four previous variants of SARS-CoV-2, as well as in post-vaccination breakthrough infections (BTIs) caused by Delta or BA.1. We confirm that BA.4 shows high-level neutralization resistance regardless of the infecting variant. However, BTIs retain activity against BA.4, albeit at reduced titers. BA.4 sensitivity to ADCC is reduced compared with other variants but with smaller fold losses compared with neutralization and similar patterns of cross-reactivity. Overall, the high neutralization resistance of BA.4, even to antibodies from BA.1 infection, provides an immunological mechanism for the rapid spread of BA.4 immediately after a BA.1-dominated wave. Furthermore, although ADCC potential against BA.4 is reduced, residual activity may contribute to observed protection from severe disease.
Assuntos
Citotoxicidade Celular Dependente de Anticorpos , Soroterapia para COVID-19 , SARS-CoV-2 , Humanos , Anticorpos , Infecções Irruptivas , COVID-19/imunologia , COVID-19/terapia , SARS-CoV-2/imunologiaRESUMO
SARS-CoV-2 infection in children typically results in asymptomatic or mild disease. There is a paucity of studies on antiviral immunity in African children. We investigated SARS-CoV-2-specific T cell responses in 71 unvaccinated asymptomatic South African children who were seropositive or seronegative for SARS-CoV-2. SARS-CoV-2-specific CD4+ T cell responses were detectable in 83% of seropositive and 60% of seronegative children. Although the magnitude of the CD4+ T cell response did not differ significantly between the two groups, their functional profiles were distinct, with SARS-CoV-2 seropositive children exhibiting a higher proportion of polyfunctional T cells compared to their seronegative counterparts. The frequency of SARS-CoV-2-specific CD4+ T cells in seronegative children was associated with the endemic human coronavirus (HCoV) HKU1 IgG response. Overall, the presence of SARS-CoV-2-responding T cells in seronegative children may result from cross-reactivity to endemic coronaviruses and could contribute to the relative protection from disease observed in SARS-CoV-2-infected children.
RESUMO
Background: We report the safety and immunogenicity of fractional and full dose Ad26.COV2.S and BNT162b2 in an open label phase 2 trial of participants previously vaccinated with a single dose of Ad26.COV2.S, with 91.4% showing evidence of previous SARS-CoV-2 infection. Methods: A total of 286 adults (with or without HIV) were enrolled >4 months after an Ad26.COV2.S prime and randomized 1:1:1:1 to receive either a full or half-dose booster of Ad26.COV2.S or BNT162b2 vaccine. B cell responses (binding, neutralization and antibody dependent cellular cytotoxicity-ADCC), and spike-specific T-cell responses were evaluated at baseline, 2, 12 and 24 weeks post-boost. Antibody and T-cell immunity targeting the Ad26 vector was also evaluated. Results: No vaccine-associated serious adverse events were recorded. The full- and half-dose BNT162b2 boosted anti-SARS-CoV-2 binding antibody levels (3.9- and 4.5-fold, respectively) and neutralizing antibody levels (4.4- and 10-fold). Binding and neutralizing antibodies following half-dose Ad26.COV2.S were not significantly boosted. Full-dose Ad26.COV2.S did not boost binding antibodies but slightly enhanced neutralizing antibodies (2.1-fold). ADCC was marginally increased only after a full-dose BNT162b2. T-cell responses followed a similar pattern to neutralizing antibodies. Six months post-boost, antibody and T-cell responses had waned to baseline levels. While we detected strong anti-vector immunity, there was no correlation between anti-vector immunity in Ad26.COV2.S recipients and spike-specific neutralizing antibody or T-cell responses post-Ad26.COV2.S boosting. Conclusion: In the context of hybrid immunity, boosting with heterologous full- or half-dose BNT162b2 mRNA vaccine demonstrated superior immunogenicity 2 weeks post-vaccination compared to homologous Ad26.COV2.S, though rapid waning occurred by 12 weeks post-boost. Trial Registration: South African National Clinical Trial Registry (SANCR): DOH-27-012022-7841. Funding: South African Medical Research Council (SAMRC) and South African Department of Health (SA DoH).