Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 33
Filtrar
Mais filtros

País/Região como assunto
Intervalo de ano de publicação
1.
Photochem Photobiol Sci ; 19(5): 542-584, 2020 May 20.
Artigo em Inglês | MEDLINE | ID: mdl-32364555

RESUMO

This assessment, by the United Nations Environment Programme (UNEP) Environmental Effects Assessment Panel (EEAP), one of three Panels informing the Parties to the Montreal Protocol, provides an update, since our previous extensive assessment (Photochem. Photobiol. Sci., 2019, 18, 595-828), of recent findings of current and projected interactive environmental effects of ultraviolet (UV) radiation, stratospheric ozone, and climate change. These effects include those on human health, air quality, terrestrial and aquatic ecosystems, biogeochemical cycles, and materials used in construction and other services. The present update evaluates further evidence of the consequences of human activity on climate change that are altering the exposure of organisms and ecosystems to UV radiation. This in turn reveals the interactive effects of many climate change factors with UV radiation that have implications for the atmosphere, feedbacks, contaminant fate and transport, organismal responses, and many outdoor materials including plastics, wood, and fabrics. The universal ratification of the Montreal Protocol, signed by 197 countries, has led to the regulation and phase-out of chemicals that deplete the stratospheric ozone layer. Although this treaty has had unprecedented success in protecting the ozone layer, and hence all life on Earth from damaging UV radiation, it is also making a substantial contribution to reducing climate warming because many of the chemicals under this treaty are greenhouse gases.


Assuntos
Mudança Climática , Ozônio Estratosférico , Raios Ultravioleta , Saúde Ambiental , Humanos , Microplásticos , Nações Unidas
2.
Photochem Photobiol Sci ; 17(2): 127-179, 2018 Feb 14.
Artigo em Inglês | MEDLINE | ID: mdl-29404558

RESUMO

The Environmental Effects Assessment Panel (EEAP) is one of three Panels of experts that inform the Parties to the Montreal Protocol. The EEAP focuses on the effects of UV radiation on human health, terrestrial and aquatic ecosystems, air quality, and materials, as well as on the interactive effects of UV radiation and global climate change. When considering the effects of climate change, it has become clear that processes resulting in changes in stratospheric ozone are more complex than previously held. Because of the Montreal Protocol, there are now indications of the beginnings of a recovery of stratospheric ozone, although the time required to reach levels like those before the 1960s is still uncertain, particularly as the effects of stratospheric ozone on climate change and vice versa, are not yet fully understood. Some regions will likely receive enhanced levels of UV radiation, while other areas will likely experience a reduction in UV radiation as ozone- and climate-driven changes affect the amounts of UV radiation reaching the Earth's surface. Like the other Panels, the EEAP produces detailed Quadrennial Reports every four years; the most recent was published as a series of seven papers in 2015 (Photochem. Photobiol. Sci., 2015, 14, 1-184). In the years in between, the EEAP produces less detailed and shorter Update Reports of recent and relevant scientific findings. The most recent of these was for 2016 (Photochem. Photobiol. Sci., 2017, 16, 107-145). The present 2017 Update Report assesses some of the highlights and new insights about the interactive nature of the direct and indirect effects of UV radiation, atmospheric processes, and climate change. A full 2018 Quadrennial Assessment, will be made available in 2018/2019.

3.
Photochem Photobiol Sci ; 14(1): 88-107, 2015 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-25435216

RESUMO

In this assessment we summarise advances in our knowledge of how UV-B radiation (280-315 nm), together with other climate change factors, influence terrestrial organisms and ecosystems. We identify key uncertainties and knowledge gaps that limit our ability to fully evaluate the interactive effects of ozone depletion and climate change on these systems. We also evaluate the biological consequences of the way in which stratospheric ozone depletion has contributed to climate change in the Southern Hemisphere. Since the last assessment, several new findings or insights have emerged or been strengthened. These include: (1) the increasing recognition that UV-B radiation has specific regulatory roles in plant growth and development that in turn can have beneficial consequences for plant productivity via effects on plant hardiness, enhanced plant resistance to herbivores and pathogens, and improved quality of agricultural products with subsequent implications for food security; (2) UV-B radiation together with UV-A (315-400 nm) and visible (400-700 nm) radiation are significant drivers of decomposition of plant litter in globally important arid and semi-arid ecosystems, such as grasslands and deserts. This occurs through the process of photodegradation, which has implications for nutrient cycling and carbon storage, although considerable uncertainty exists in quantifying its regional and global biogeochemical significance; (3) UV radiation can contribute to climate change via its stimulation of volatile organic compounds from plants, plant litter and soils, although the magnitude, rates and spatial patterns of these emissions remain highly uncertain at present. UV-induced release of carbon from plant litter and soils may also contribute to global warming; and (4) depletion of ozone in the Southern Hemisphere modifies climate directly via effects on seasonal weather patterns (precipitation and wind) and these in turn have been linked to changes in the growth of plants across the Southern Hemisphere. Such research has broadened our understanding of the linkages that exist between the effects of ozone depletion, UV-B radiation and climate change on terrestrial ecosystems.


Assuntos
Ecossistema , Perda de Ozônio , Ozônio/química , Raios Ultravioleta , Animais , Dióxido de Carbono/química , Mudança Climática , Secas , Ozônio/metabolismo , Plantas/metabolismo , Plantas/efeitos da radiação , Microbiologia do Solo , Compostos Orgânicos Voláteis/química
4.
Photochem Photobiol Sci ; 10(2): 226-41, 2011 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-21253661

RESUMO

Ultraviolet radiation (UV) is a minor fraction of the solar spectrum reaching the ground surface. In this assessment we summarize the results of previous work on the effects of the UV-B component (280-315 nm) on terrestrial ecosystems, and draw attention to important knowledge gaps in our understanding of the interactive effects of UV radiation and climate change. We highlight the following points: (i) The effects of UV-B on the growth of terrestrial plants are relatively small and, because the Montreal Protocol has been successful in limiting ozone depletion, the reduction in plant growth caused by increased UV-B radiation in areas affected by ozone decline since 1980 is unlikely to have exceeded 6%. (ii) Solar UV-B radiation has large direct and indirect (plant-mediated) effects on canopy arthropods and microorganisms. Therefore, trophic interactions (herbivory, decomposition) in terrestrial ecosystems appear to be sensitive to variations in UV-B irradiance. (iii) Future variations in UV radiation resulting from changes in climate and land-use may have more important consequences on terrestrial ecosystems than the changes in UV caused by ozone depletion. This is because the resulting changes in UV radiation may affect a greater range of ecosystems, and will not be restricted solely to the UV-B component. (iv) Several ecosystem processes that are not particularly sensitive to UV-B radiation can be strongly affected by UV-A (315-400 nm) radiation. One example is the physical degradation of plant litter. Increased photodegradation (in response to reduced cloudiness or canopy cover) will lead to increased carbon release to the atmosphere via direct and indirect mechanisms.


Assuntos
Mudança Climática , Ecossistema , Energia Solar , Raios Ultravioleta/efeitos adversos , Animais , Humanos , Plantas/efeitos da radiação , Monitoramento de Radiação
5.
Science ; 247(4940): 329-32, 1990 Jan 19.
Artigo em Inglês | MEDLINE | ID: mdl-17735851

RESUMO

When individual seedlings of Datura ferox and Sinapis alba were transferred to populations formed by plants of similar stature, they responded with an increase in the rate of stem elongation. The reaction was detected within 3 days after transplanting and occurred well before shading among neighbors became important. This rapid response, which may be crucial for success in the competition for light, was reduced or abolished when individual internodes were "blinded" to the far-red radiation scattered by the surrounding seedlings. These results show the operation of a localized, photomorphogenetic control of stem elongation that may play a central role in the plastic adjustment of plants during the early stages of canopy development.

6.
Plant Physiol ; 112(1): 161-170, 1996 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-12226382

RESUMO

To study functional relationships between the effects of solar ultraviolet-B radiation (UV-B) on different aspects of the physiology of a wild plant, we carried out exclusion experiments in the field with the summer annual Datura ferox L. Solar UV-B incident over Buenos Aires reduced daytime seedling emergence, inhibited stem elongation and leaf expansion, and tended to reduce biomass accumulation during early growth. However, UV-B had no effect on calculated net assimilation rate. Using a monoclonal antibody specific to the cyclobutane-pyrimidine dimer (CPD), we found that plants receiving full sunlight had more CPDs per unit of DNA than plants shielded from solar UV-B, but the positive correlation between UV-B and CPD burden tended to level off at high (near solar) UV-B levels. At our field site, Datura plants were consumed by leaf beetles (Coleoptera), and the proportion of plants attacked by insects declined with the amount of UV-B received during growth. Field experiments showed that plant exposure to solar UV-B reduced the likelihood of leaf beetle attack by one-half. Our results highlight the complexities associated with scaling plant responses to solar UV-B, because they show: (a) a lack of correspondence between UV-B effects on net assimilation rate and whole-plant growth rate, (b) nonlinear UV-B dose-response curves, and (c) UV-B effects of plant attractiveness to natural herbivores.

7.
Int J Biol Markers ; 9(3): 125-34, 1994.
Artigo em Inglês | MEDLINE | ID: mdl-7829891

RESUMO

FC-2.15 is an IgM monoclonal antibody (MAb) obtained by immunizing Balb/c mice with tumor epithelial cells from a human undifferentiated primary breast carcinoma. FC-2.15 reacts with 93.9% (31/33) of human breast primary tumors, independently of their histology and hormone receptor content. Moreover, FC-2.15 reacts with 79.6 +/- 13.8% (mean +/- SD) of total breast malignant tumor cells and with 88.7 +/- 9.9% of proliferating tumor cells. It recognizes other neoplasia such as colon cancer, squamous carcinoma and melanoma. Among the normal tissues examined, strong cross-reactivity was found with kidney proximal convolute tubules, bone marrow myeloid progeny, peripheral granulocytes and large bowel epithelium. Through Western blots, FC-2.15 recognizes three major bands of Mr 160 kDa, 130 kDa and 115 kDa in membrane extracts of MCF-7 cells grown in nude mice and of human breast carcinoma and three major bands of 250 kDa, 185 kDa and 105 kDa in membrane extracts of peripheral granulocytes. This MAb mediates complement- cytotoxicity against malignant cells, reducing the clonogenic capacity of breast primary tumor cells and MCF-7 cells to 35.6 +/- 41.2% and 11.7 +/- 4.8% of control values respectively, whereas that of normal bone marrow cells is not affected (104.7 +/- 17.4%).


Assuntos
Anticorpos Monoclonais/imunologia , Anticorpos Antineoplásicos/imunologia , Neoplasias da Mama/imunologia , Neoplasias/imunologia , Animais , Anticorpos Monoclonais/isolamento & purificação , Anticorpos Monoclonais/uso terapêutico , Anticorpos Antineoplásicos/isolamento & purificação , Especificidade de Anticorpos , Antígenos de Neoplasias/química , Antígenos de Neoplasias/imunologia , Biomarcadores Tumorais/imunologia , Purging da Medula Óssea , Neoplasias da Mama/terapia , Citotoxicidade Imunológica , Feminino , Humanos , Imunização , Masculino , Camundongos , Camundongos Endogâmicos BALB C , Camundongos Nus , Peso Molecular , Células Tumorais Cultivadas/imunologia , Ensaio Tumoral de Célula-Tronco
8.
Oecologia ; 86(4): 561-567, 1991 May.
Artigo em Inglês | MEDLINE | ID: mdl-28313338

RESUMO

Seedlings of shade-intolerant species react to alterations of the light climate caused by their neighbors with morphological changes that may influence the pattern of resource acquisition and utilization at the whole-canopy level. One such change, the increased stem elongation rate that is triggered by low red (R, 660 nm) to far-red (FR, 730 nm) ratios (R:FR) in dense canopies, might reduce the amount of assimilates available for leaf area expansion or root growth, and in that way affect resource capture by the canopy. We have tested this hypothesis by comparing the growth of both isolated individuals and canopies of the weed Amaranthus quitensis under conditions differing only in the spectral distribution of the incident light. When canopies received the full spectrum of sunlight, the stems were a large proportion (40-57%) of total biomass. Filtering the FR waveband (and hence raising the R:FR ratio to eliminate the neighbors' proximity-signal) resulted in shorter canopies with lighter stems. However, the growth of leaves and roots was not promoted by this treatment, indicating that the opportunity cost of the assimilates invested in the stems was nil or very small. Filtering the FR had no effect on biomass accumulation when plants were grown as isolated individuals. The higher growth of the canopics under full spectrum could be due to a higher light interception or to a higher efficiency of light conversion into biomass. The first possibility is weakened by the observation that filtering the FR had no effect on the dynamics of soil covering by the crops. The second is indirectly strengthened by results of an experiment with isolated plants showing that stem elongation, stem growth, and total plant biomass can be increased by reducing the flux of R light received by the stems without affecting the light climate of the leaves. Further work is needed to distinguish between these two possibilities; whatever the cause, our results show that the elongation responses to decreased R:FR may lead to a net increase in canopy productivity, and do not necessarily have a negative impact on the growth of resource-harvesting organs.

9.
Oecologia ; 76(2): 288-293, 1988 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-28312209

RESUMO

We studied the effects of density on the dynamics of seedling growth and canopy microclimate within experimental stands composed of Datura ferox L. seedlings grown in individual pots. Interception of photosynthetically active radiation (PAR) by seedlings was evaluated either indirectly, by measuring leaf area, proportion of leaf area shaded by neighbouring individuals and laminar orientation with respect to sunlight, or directly, by measuring PAR at individual leaves at their natural angle of display. An integrating cylinder, with a geometry approximating that of a stem, was used within the canopies to measure the red:far-red (R:FR) ratio of the light flux from all compass points parallel to the soil surface. Seedlings responded rapidly (i.e. 1-2 weeks) to increased density by producing longer internodes and partitioning more dry matter to stems relative to leaves. These responses were observed before either PAR interception of growth rate were reduced by the presence of neighbours. Conversely, morphogenetic adjustment was preceded by a consistent effect of plant density on the R:FR ratio of the light received by the integrating cylinder. Air and soil temperature were not affected by density in these experiments. Differences in wind velocity within the canopy associated with plant density were avoided by the experimental procedure. The results support the idea that the drop in R:FR ratio of the light flux parallel to the ground - e.g. reflected sunlight - is an early signal that allows rapid adjustment of plant form to changes in canopy structure.

10.
J Photochem Photobiol B ; 62(1-2): 67-77, 2001 Sep 01.
Artigo em Inglês | MEDLINE | ID: mdl-11693368

RESUMO

The southern part of Tierra del Fuego, in the southernmost tip of South America, is covered by dense Nothofagus spp. forests and Sphagnum-dominated peat bogs, which are subjected to the influence of ozone depletion and to increased levels of solar ultraviolet-B radiation (UV-B). Over the last 5 years we have studied some of the biological impacts of solar UV-B on natural ecosystems of this region. We have addressed two general problems: (i) do the fluctuations in UV-B levels under the influence of the Antarctic ozone 'hole' have any measurable biological impact, and (ii) what are the long-term effects of solar (ambient) UV-B on the Tierra del Fuego ecosystems? In this paper, we provide an overview of the progress made during the first 4 years of the project. We highlight and discuss the following results: (1) ambient UV-B has subtle but significant inhibitory effects on the growth of herbaceous and graminoid species of this region (growth reduction < or = 12%), whereas no consistent inhibitory effects could be detected in woody perennials; (2) in the species investigated in greatest detail, Gunnera magellanica, the inhibitory effect of solar UV-B is accompanied by increased levels of DNA damage in leaf tissue, and the DNA damage density in the early spring is clearly correlated with the dose of weighted UV-B measured at ground level; (3) the herbaceous species investigated thus far show little or no acclimation responses to ambient UV-B such as increased sunscreen levels and DNA repair capacity; and (4) ambient UV-B has significant effects on heterotrophic organisms, included marked inhibitory effects on insect herbivory. The results from the experiments summarized in this review clearly indicate that UV-B influences several potentially important processes and ecological interactions in the terrestrial ecosystems of Tierra del Fuego.


Assuntos
Ecossistema , Luz Solar , Raios Ultravioleta , Animais , Argentina , Clorofila/efeitos da radiação , Plantas/efeitos da radiação
11.
Oncogene ; 33(12): 1570-80, 2014 Mar 20.
Artigo em Inglês | MEDLINE | ID: mdl-23604116

RESUMO

Growth of breast cancers is often dependent on ovarian steroid hormones making the tumors responsive to antagonists of hormone receptors. However, eventually the tumors become hormone independent, raising the need to identify downstream targets for the inhibition of tumor growth. One possibility is to focus on the signaling mechanisms used by ovarian steroid hormones to induce breast cancer cell proliferation. Here we report that the mitogen- and stress-activated kinase 1 (MSK1) could be a potential druggable target. Using the breast cancer cell line T47D, we show that estrogens (E2) and progestins activate MSK1, which forms a complex with the corresponding hormone receptor. Inhibition of MSK1 activity with H89 or its depletion by MSK1 short hairpin RNAs (shRNAs) specifically abrogates cell proliferation in response to E2 or progestins without affecting serum-induced cell proliferation. MSK1 activity is required for the transition from the G1- to the S-phase of the cell cycle and inhibition of MSK1 compromises both estradiol- and progestin-dependent induction of cell cycle genes. ChIP-seq experiments identified binding of MSK1 to progesterone receptor-binding sites associated with hormone-responsive genes. MSK1 recruitment to epigenetically defined enhancer regions supports the need of MSK1 as a chromatin remodeler in hormone-dependent regulation of gene transcription. In agreement with this interpretation, expression of a histone H3 mutated at S10 eliminates the hormonal effect on cell proliferation and on induction of relevant target genes. Finally, we show that E2- or progestin-dependent growth of T47D cells xenografted in immunodefficient mice is inhibited by depletion of MSK1, indicating that our findings are not restricted to cultured cells, and that MSK1 plays an important role for hormone-dependent breast cancer growth in a more physiological context.


Assuntos
Neoplasias da Mama/patologia , Estrogênios/farmacologia , Progestinas/farmacologia , Proteínas Quinases S6 Ribossômicas 90-kDa/metabolismo , Animais , Neoplasias da Mama/genética , Neoplasias da Mama/metabolismo , Linhagem Celular Tumoral , Proliferação de Células/efeitos dos fármacos , Transformação Celular Neoplásica/efeitos dos fármacos , Cromatina/efeitos dos fármacos , Cromatina/metabolismo , Ativação Enzimática/efeitos dos fármacos , Estradiol/farmacologia , Feminino , Fase G1/efeitos dos fármacos , Fase G1/genética , Histonas/genética , Humanos , Camundongos , Mutação , Inibidores de Proteínas Quinases/farmacologia , Transporte Proteico/efeitos dos fármacos , Receptores de Progesterona/metabolismo , Proteínas Quinases S6 Ribossômicas 90-kDa/antagonistas & inibidores , Proteínas Quinases S6 Ribossômicas 90-kDa/deficiência , Fase S/efeitos dos fármacos , Fase S/genética , Ativação Transcricional/efeitos dos fármacos
12.
Oncogene ; 33(48): 5501-10, 2014 Nov 27.
Artigo em Inglês | MEDLINE | ID: mdl-24292673

RESUMO

Acute myeloid leukemia (AML) is frequently linked to epigenetic abnormalities and deregulation of gene transcription, which lead to aberrant cell proliferation and accumulation of undifferentiated precursors. ZRF1, a recently characterized epigenetic factor involved in transcriptional regulation, is highly overexpressed in human AML, but it is not known whether it plays a role in leukemia progression. Here, we demonstrate that ZRF1 depletion decreases cell proliferation, induces apoptosis and enhances cell differentiation in human AML cells. Treatment with retinoic acid (RA), a differentiating agent currently used to treat certain AMLs, leads to a functional switch of ZRF1 from a negative regulator to an activator of differentiation. At the molecular level, ZRF1 controls the RA-regulated gene network through its interaction with the RA receptor α (RARα) and its binding to RA target genes. Our genome-wide expression study reveals that ZRF1 regulates the transcription of nearly half of RA target genes. Consistent with our in vitro observations that ZRF1 regulates proliferation, apoptosis, and differentiation, ZRF1 depletion strongly inhibits leukemia progression in a xenograft mouse model. Finally, ZRF1 knockdown cooperates with RA treatment in leukemia suppression in vivo. Taken together, our data reveal that ZRF1 is a key transcriptional regulator in leukemia progression and suggest that ZRF1 inhibition could be a novel strategy to be explored for AML treatment.


Assuntos
Proteínas de Ligação a DNA/metabolismo , Regulação Neoplásica da Expressão Gênica/fisiologia , Leucemia Mieloide Aguda/patologia , Proteínas Oncogênicas/metabolismo , Transdução de Sinais/fisiologia , Tretinoína/metabolismo , Animais , Antineoplásicos/metabolismo , Antineoplásicos/farmacologia , Apoptose/efeitos dos fármacos , Apoptose/genética , Western Blotting , Diferenciação Celular/efeitos dos fármacos , Diferenciação Celular/genética , Linhagem Celular Tumoral , Proliferação de Células/efeitos dos fármacos , Proliferação de Células/genética , Proteínas de Ligação a DNA/genética , Progressão da Doença , Humanos , Imunoprecipitação , Leucemia Mieloide Aguda/genética , Leucemia Mieloide Aguda/metabolismo , Camundongos , Camundongos SCID , Chaperonas Moleculares , Análise de Sequência com Séries de Oligonucleotídeos , Proteínas Oncogênicas/genética , Proteínas de Ligação a RNA , Transdução de Sinais/efeitos dos fármacos , Transcrição Gênica , Transfecção , Tretinoína/farmacologia , Ensaios Antitumorais Modelo de Xenoenxerto
19.
Photochem Photobiol Sci ; 6(3): 252-66, 2007 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-17344961

RESUMO

There have been significant advances in our understanding of the effects of UV-B radiation on terrestrial ecosystems, especially in the description of mechanisms of plant response. A further area of highly interesting research emphasizes the importance of indirect UV radiation effects on plants, pathogens, herbivores, soil microbes and ecosystem processes below the surface. Although photosynthesis of higher plants and mosses is seldom affected by enhanced or reduced UV-B radiation in most field studies, effects on growth and morphology (form) of higher plants and mosses are often manifested. This can lead to small reductions in shoot production and changes in the competitive balance of different species. Fungi and bacteria are generally more sensitive to damage by UV-B radiation than are higher plants. However, the species differ in their UV-B radiation sensitivity to damage, some being affected while others may be very tolerant. This can lead to changes in species composition of microbial communities with subsequent influences on processes such as litter decomposition. Changes in plant chemical composition are commonly reported due to UV-B manipulations (either enhancement or attenuation of UV-B in sunlight) and may lead to substantial reductions in consumption of plant tissues by insects. Although sunlight does not penetrate significantly into soils, the biomass and morphology of plant root systems of plants can be modified to a much greater degree than plant shoots. Root mass can exhibit sizeable declines with more UV-B. Also, UV-B-induced changes in soil microbial communities and biomass, as well as altered populations of small invertebrates have been reported and these changes have important implications for mineral nutrient cycling in the soil. Many new developments in understanding the underlying mechanisms mediating plant response to UV-B radiation have emerged. This new information is helpful in understanding common responses of plants to UV-B radiation, such as diminished growth, acclimation responses of plants to UV-B radiation and interactions of plants with consumer organisms such as insects and plant pathogens. The response to UV-B radiation involves both the initial stimulus by solar radiation and transmission of signals within the plants. Resulting changes in gene expression induced by these signals may have elements in common with those elicited by other environmental factors, and generate overlapping functional (including acclimation) responses. Concurrent responses of terrestrial systems to the combination of enhanced UV-B radiation and other global change factors (increased temperature, CO2, available nitrogen and altered precipitation) are less well understood. Studies of individual plant responses to combinations of factors indicate that plant growth can be augmented by higher CO2 levels, yet many of the effects of UV-B radiation are usually not ameliorated by the elevated CO2. UV-B radiation often increases both plant frost tolerance and survival under extreme high temperature conditions. Conversely, extreme temperatures sometimes influence the UV-B radiation sensitivity of plants directly. Plants that endure water deficit stress effectively are also likely to be tolerant of high UV-B flux. Biologically available nitrogen is exceeding historical levels in many regions due to human activities. Studies show that plants well supplied with nitrogen are generally more sensitive to UV-B radiation. Technical issues concerning the use of biological spectral weighting functions (BSWFs) have been further elucidated. The BSWFs, which are multiplication factors assigned to different wavelengths giving an indication of their relative biological effectiveness, are critical to the proper conduct and interpretation of experiments in which organisms are exposed to UV radiation, both in the field and in controlled environment facilities. The characteristics of BSWFs vary considerably among different plant processes, such as growth, DNA damage, oxidative damage and induction of changes in secondary chemicals. Thus, use of a single BSWF for plant or ecosystem response is not appropriate. This brief review emphasizes progress since the previous report toward the understanding of solar ultraviolet radiation effects on terrestrial systems as it relates to ozone column reduction and the interaction of climate change factors.


Assuntos
Ecossistema , Efeito Estufa , Raios Ultravioleta , Animais , Humanos , Plantas/efeitos da radiação
20.
Plant Physiol ; 89(4): 1324-30, 1989 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-16666704

RESUMO

A fiber optic probe inserted into plant tissues was used to investigate the effects of canopy density on the light environment in different organs. The red:far-red ratio inside the stem of Datura ferox L. seedlings and the estimated phytochrome photoequilibrium were strongly reduced by the presence of neighbors forming canopies too sparse to cause any mutual shading at the level of the leaves. In such canopies, changes in plant density had little effects on the light regime inside the leaves of the succulent Aeonium haworthii (S.D.) Webb et Berth., particularly when the lamina was kept nearly normal to the direct rays of the sun. In field experiments using D. ferox and Sinapis alba L. seedlings, the elongation of the internodes responded to various types of localized light-quality treatments that simulated different plant densities in sparse canopies. The responses were quantitatively similar to those elicited by changes in plant density. The evidence supports the hypothesis that, in stands formed by plants of similar size, the red:far-red ratio of the light that impinges laterally on the stems is among the earliest environmental cues that allow plants to detect local canopy density and adjust axis extension accordingly.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA