Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 60
Filtrar
1.
EMBO J ; 42(24): e113941, 2023 Dec 11.
Artigo em Inglês | MEDLINE | ID: mdl-38054357

RESUMO

The long noncoding RNA (lncRNA) AUXIN-REGULATED PROMOTER LOOP (APOLO) recognizes a subset of target loci across the Arabidopsis thaliana genome by forming RNA-DNA hybrids (R-loops) and modulating local three-dimensional chromatin conformation. Here, we show that APOLO regulates shade avoidance syndrome by dynamically modulating expression of key factors. In response to far-red (FR) light, expression of APOLO anti-correlates with that of its target BRANCHED1 (BRC1), a master regulator of shoot branching in Arabidopsis thaliana. APOLO deregulation results in BRC1 transcriptional repression and an increase in the number of branches. Accumulation of APOLO transcription fine-tunes the formation of a repressive chromatin loop encompassing the BRC1 promoter, which normally occurs only in leaves and in a late response to far-red light treatment in axillary buds. In addition, our data reveal that APOLO participates in leaf hyponasty, in agreement with its previously reported role in the control of auxin homeostasis through direct modulation of auxin synthesis gene YUCCA2, and auxin efflux genes PID and WAG2. We show that direct application of APOLO RNA to leaves results in a rapid increase in auxin signaling that is associated with changes in the plant response to far-red light. Collectively, our data support the view that lncRNAs coordinate shade avoidance syndrome in A. thaliana, and reveal their potential as exogenous bioactive molecules. Deploying exogenous RNAs that modulate plant-environment interactions may therefore become a new tool for sustainable agriculture.


Assuntos
Proteínas de Arabidopsis , Arabidopsis , RNA Longo não Codificante , Arabidopsis/genética , Arabidopsis/metabolismo , RNA Longo não Codificante/genética , RNA Longo não Codificante/metabolismo , Proteínas de Arabidopsis/metabolismo , Ácidos Indolacéticos/metabolismo , Epigênese Genética , Cromatina/metabolismo , Regulação da Expressão Gênica de Plantas , Luz , Fatores de Transcrição/metabolismo
2.
Plant Cell Environ ; 2024 Jun 14.
Artigo em Inglês | MEDLINE | ID: mdl-38872585

RESUMO

Plants perceive the presence and defence status of their neighbours through light and volatile cues, but how plants integrate both stimuli is poorly understood. We investigated if and how low Red to Far red light (R:FR) ratios, indicative of shading or canopy closure, affect maize (Zea mays) responses to herbivore-induced plant volatiles (HIPVs), including the green leaf volatile (Z)-3-hexenyl acetate. We modulated light signalling and perception by using FR supplementation and a phyB1phyB2 mutant, and we determined volatile release as a response readout. To gain mechanistic insights, we examined expression of volatile biosynthesis genes, hormone accumulation, and photosynthesis. Exposure to a full blend of HIPVs or (Z)-3-hexenyl acetate induced maize volatile release. Short-term FR supplementation increased this response. In contrast, prolonged FR supplementation or constitutive phytochrome B inactivation in phyB1phyB2 plants showed the opposite response. Short-term FR supplementation enhanced photosynthesis and stomatal conductance and (Z)-3-hexenyl acetate-induced JA-Ile levels. We conclude that a FR-enriched light environment can prompt maize plants to respond more strongly to HIPVs emitted by neighbours, which might be explained by changes in photosynthetic processes and phytochrome B signalling. Our findings reveal interactive responses to light and volatile cues with potentially important consequences for plant-plant and plant-herbivore interactions.

3.
Photochem Photobiol Sci ; 22(6): 1475-1489, 2023 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-36807054

RESUMO

Light is an environmental signal that modulates plant defenses against attackers. Recent research has focused on the effects of light on defense hormone signaling; however, the connections between light signaling pathways and the biosynthesis of specialized metabolites involved in plant defense have been relatively unexplored. Here, we show that Arabidopsis BBX29, a protein that belongs to the B-Box transcription factor (TF) family, integrates photomorphogenic signaling with defense responses by promoting flavonoid, sinapate and glucosinolate accumulation in Arabidopsis leaves. AtBBX29 transcript levels were up regulated by light, through photoreceptor signaling pathways. Genetic evidence indicated that AtBBX29 up-regulates MYB12 gene expression, a TF known to induce genes related to flavonoid biosynthesis in a light-dependent manner, and MYB34 and MYB51, which encode TFs involved in the regulation of glucosinolate biosynthesis. Thus, bbx29 knockout mutants displayed low expression levels of key genes of the flavonoid biosynthetic pathway, and the opposite was true in BBX29 overexpression lines. In agreement with the transcriptomic data, bbx29 mutant plants accumulated lower levels of kaempferol glucosides, sinapoyl malate, indol-3-ylmethyl glucosinolate (I3M), 4-methylsulfinylbutyl glucosinolate (4MSOB) and 3-methylthiopropyl glucosinolate (3MSP) in rosette leaves compared to the wild-type, and showed increased susceptibility to the necrotrophic fungus Botrytis cinerea and to the herbivore Spodoptera frugiperda. In contrast, BBX29 overexpressing plants displayed increased resistance to both attackers. In addition, we found that AtBBX29 plays an important role in mediating the effects of ultraviolet-B (UV-B) radiation on plant defense against B. cinerea. Taken together, these results suggest that AtBBX29 orchestrates the accumulation of specific light-induced metabolites and regulates Arabidopsis resistance against pathogens and herbivores.


Assuntos
Proteínas de Arabidopsis , Arabidopsis , Arabidopsis/genética , Arabidopsis/metabolismo , Glucosinolatos , Proteínas de Arabidopsis/genética , Proteínas de Arabidopsis/metabolismo , Mutação , Flavonoides/farmacologia , Flavonoides/metabolismo , Doenças das Plantas/microbiologia , Fatores de Transcrição/genética , Fatores de Transcrição/metabolismo , Fatores de Transcrição/farmacologia
4.
Cell ; 133(1): 164-76, 2008 Apr 04.
Artigo em Inglês | MEDLINE | ID: mdl-18394996

RESUMO

Plants grown at high densities perceive a decrease in the red to far-red (R:FR) ratio of incoming light, resulting from absorption of red light by canopy leaves and reflection of far-red light from neighboring plants. These changes in light quality trigger a series of responses known collectively as the shade avoidance syndrome. During shade avoidance, stems elongate at the expense of leaf and storage organ expansion, branching is inhibited, and flowering is accelerated. We identified several loci in Arabidopsis, mutations in which lead to plants defective in multiple shade avoidance responses. Here we describe TAA1, an aminotransferase, and show that TAA1 catalyzes the formation of indole-3-pyruvic acid (IPA) from L-tryptophan (L-Trp), the first step in a previously proposed, but uncharacterized, auxin biosynthetic pathway. This pathway is rapidly deployed to synthesize auxin at the high levels required to initiate the multiple changes in body plan associated with shade avoidance.


Assuntos
Arabidopsis/fisiologia , Ácidos Indolacéticos/metabolismo , Triptofano/metabolismo , Sequência de Aminoácidos , Arabidopsis/genética , Vias Biossintéticas , Escuridão , Regulação da Expressão Gênica de Plantas , Dados de Sequência Molecular , Folhas de Planta/metabolismo , Alinhamento de Sequência , Triptofano/biossíntese , Triptofano Transaminase/química , Triptofano Transaminase/genética , Triptofano Transaminase/metabolismo
5.
New Phytol ; 235(5): 2022-2033, 2022 09.
Artigo em Inglês | MEDLINE | ID: mdl-35579884

RESUMO

Plant litter decomposition is a key process for carbon (C) turnover in terrestrial ecosystems. Sunlight has been shown to cause and accelerate C release in semiarid ecosystems, yet the dose-response relationships for these effects have not been evaluated. We conducted a two-phase experiment where plant litter of three species was subjected to a broad range of cumulative solar radiation (CSR) exposures under field conditions. We then evaluated the relationships between CSR exposure and abiotic mass loss, litter quality and the subsequent biotic decomposition and microbial activity in litter. Dose-response relationships demonstrated that CSR exposure was modestly correlated with abiotic mass loss but highly significantly correlated with lignin degradation, saccharification, microbial activity and biotic decay of plant litter across all species. Moreover, a comparison of these dose-response relationships suggested that small reductions in litter lignin due to exposure to sunlight may have large consequences for biotic decay. These results provide strong support for a model that postulates a critical role for lignin photodegradation in the mechanism of photofacilitation and demonstrate that, under natural field conditions, biotic degradation of plant litter is linearly related with the dose of solar radiation received by the material before coming into contact with decomposer microorganisms.


Assuntos
Ecossistema , Exposição à Radiação , Lignina/metabolismo , Fotólise , Folhas de Planta/metabolismo , Plantas/metabolismo
6.
Plant Cell ; 31(9): 2070-2088, 2019 09.
Artigo em Inglês | MEDLINE | ID: mdl-31289115

RESUMO

In the course of evolution, plants have developed mechanisms that orient their organs toward the incoming light. At the seedling stage, positive phototropism is mainly regulated by phototropin photoreceptors in blue and UV wavelengths. Contrasting with this, we report that UV RESISTANCE LOCUS8 (UVR8) serves as the predominant photoreceptor of UV-B-induced phototropic responses in Arabidopsis (Arabidopsis thaliana) inflorescence stems. We examined the molecular mechanisms underlying this response and our findings support the Blaauw theory (Blaauw, 1919), suggesting rapid differential growth through unilateral photomorphogenic growth inhibition. UVR8-dependent UV-B light perception occurs mainly in the epidermis and cortex, but deeper tissues such as endodermis can also contribute. Within stems, a spatial difference of UVR8 signal causes a transcript and protein increase of transcription factors ELONGATED HYPOCOTYL5 (HY5) and its homolog HY5 HOMOLOG at the UV-B-exposed side. The irradiated side shows (1) strong activation of flavonoid synthesis genes and flavonoid accumulation; (2) increased gibberellin (GA)2-oxidase expression, diminished GA1 levels, and accumulation of the DELLA protein REPRESSOR OF GA1; and (3) increased expression of the auxin transport regulator PINOID, contributing to diminished auxin signaling. Together, the data suggest a mechanism of phototropin-independent inflorescence phototropism through multiple, locally UVR8-regulated hormone pathways.


Assuntos
Proteínas de Arabidopsis/metabolismo , Proteínas Cromossômicas não Histona/metabolismo , Inflorescência/metabolismo , Inflorescência/efeitos da radiação , Fototropismo/fisiologia , Fototropismo/efeitos da radiação , Caules de Planta/metabolismo , Caules de Planta/efeitos da radiação , Raios Ultravioleta , Arabidopsis/genética , Arabidopsis/metabolismo , Proteínas de Arabidopsis/genética , Fatores de Transcrição de Zíper de Leucina Básica/metabolismo , Proteínas Cromossômicas não Histona/genética , Flavonoides/genética , Flavonoides/metabolismo , Perfilação da Expressão Gênica , Regulação da Expressão Gênica de Plantas/efeitos da radiação , Ácidos Indolacéticos , Proteínas Serina-Treonina Quinases/metabolismo , Transdução de Sinais
7.
J Exp Bot ; 70(13): 3425-3434, 2019 07 05.
Artigo em Inglês | MEDLINE | ID: mdl-31099390

RESUMO

The growth-defense trade-off in plant biology has gained enormous traction in the last two decades, highlighting the importance of understanding how plants deal with two of the greatest challenges for their survival and reproduction. It has been well established that in response to competition signals perceived by informational photoreceptors, shade-intolerant plants typically activate the shade-avoidance syndrome (SAS). In turn, in response to signals of biotic attack, plants activate a suite of defense responses, many of which are directed to minimize the loss of plant tissue to the attacking agent (broadly defined, the defense syndrome, DS). We argue that components of the SAS, including increased elongation, apical dominance, reduced leaf mass per area (LMA), and allocation to roots, are in direct conflict with configurational changes that plants require to maximize defense. We hypothesize that these configurational trade-offs provide a functional explanation for the suppression of components of the DS in response to competition cues. Based on this premise, we discuss recent advances in the understanding of the mechanisms by which informational photoreceptors, by interacting with jasmonic acid (JA) signaling, help the plant to make intelligent allocation and developmental decisions that optimize its configuration in complex biotic contexts.


Assuntos
Proteínas de Arabidopsis/metabolismo , Proteínas Cromossômicas não Histona/metabolismo , Ciclopentanos/metabolismo , Oxilipinas/metabolismo , Fotorreceptores de Plantas/metabolismo , Fitocromo/metabolismo , Viridiplantae , Desenvolvimento Vegetal/fisiologia , Doenças das Plantas/imunologia , Imunidade Vegetal/fisiologia , Folhas de Planta/metabolismo , Proteínas de Plantas/metabolismo , Raízes de Plantas/metabolismo , Transdução de Sinais , Viridiplantae/crescimento & desenvolvimento , Viridiplantae/imunologia , Viridiplantae/metabolismo
8.
Photochem Photobiol Sci ; 18(3): 681-716, 2019 Mar 01.
Artigo em Inglês | MEDLINE | ID: mdl-30810560

RESUMO

Exposure of plants and animals to ultraviolet-B radiation (UV-B; 280-315 nm) is modified by stratospheric ozone dynamics and climate change. Even though stabilisation and projected recovery of stratospheric ozone is expected to curtail future increases in UV-B radiation at the Earth's surface, on-going changes in climate are increasingly exposing plants and animals to novel combinations of UV-B radiation and other climate change factors (e.g., ultraviolet-A and visible radiation, water availability, temperature and elevated carbon dioxide). Climate change is also shifting vegetation cover, geographic ranges of species, and seasonal timing of development, which further modifies exposure to UV-B radiation. Since our last assessment, there has been increased understanding of the underlying mechanisms by which plants perceive UV-B radiation, eliciting changes in growth, development and tolerances of abiotic and biotic factors. However, major questions remain on how UV-B radiation is interacting with other climate change factors to modify the production and quality of crops, as well as important ecosystem processes such as plant and animal competition, pest-pathogen interactions, and the decomposition of dead plant matter (litter). In addition, stratospheric ozone depletion is directly contributing to climate change in the southern hemisphere, such that terrestrial ecosystems in this region are being exposed to altered patterns of precipitation, temperature and fire regimes as well as UV-B radiation. These ozone-driven changes in climate have been implicated in both increases and reductions in the growth, survival and reproduction of plants and animals in Antarctica, South America and New Zealand. In this assessment, we summarise advances in our knowledge of these and other linkages and effects, and identify uncertainties and knowledge gaps that limit our ability to fully evaluate the ecological consequences of these environmental changes on terrestrial ecosystems.


Assuntos
Mudança Climática , Ozônio Estratosférico/análise , Raios Ultravioleta , Animais , Dióxido de Carbono/análise , Ecossistema , Poluentes Ambientais/análise , Água Doce/análise , Aquecimento Global , Proliferação Nociva de Algas/efeitos da radiação , Luz , Modelos Químicos , Recursos Naturais , Fotólise/efeitos da radiação , Água do Mar/análise
9.
Proc Natl Acad Sci U S A ; 113(16): 4392-7, 2016 Apr 19.
Artigo em Inglês | MEDLINE | ID: mdl-27044070

RESUMO

A mechanistic understanding of the controls on carbon storage and losses is essential for our capacity to predict and mitigate human impacts on the global carbon cycle. Plant litter decomposition is an important first step for carbon and nutrient turnover, and litter inputs and losses are essential in determining soil organic matter pools and the carbon balance in terrestrial ecosystems. Photodegradation, the photochemical mineralization of organic matter, has been recently identified as a mechanism for previously unexplained high rates of litter mass loss in arid lands; however, the global significance of this process as a control on carbon cycling in terrestrial ecosystems is not known. Here we show that, across a wide range of plant species, photodegradation enhanced subsequent biotic degradation of leaf litter. Moreover, we demonstrate that the mechanism for this enhancement involves increased accessibility to plant litter carbohydrates for microbial enzymes. Photodegradation of plant litter, driven by UV radiation, and especially visible (blue-green) light, reduced the structural and chemical bottleneck imposed by lignin in secondary cell walls. In leaf litter from woody species, specific interactions with UV radiation obscured facilitative effects of solar radiation on biotic decomposition. The generalized effect of sunlight exposure on subsequent microbial activity, mediated by increased accessibility to cell wall polysaccharides, suggests that photodegradation is quantitatively important in determining rates of mass loss, nutrient release, and the carbon balance in a broad range of terrestrial ecosystems.


Assuntos
Lignina/química , Processos Fotoquímicos , Humanos
10.
Plant Cell Environ ; 40(11): 2530-2543, 2017 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-28102548

RESUMO

Plants use photoreceptor proteins to detect the proximity of other plants and to activate adaptive responses. Of these photoreceptors, phytochrome B (phyB), which is sensitive to changes in the red (R) to far-red (FR) ratio of sunlight, is the one that has been studied in greatest detail. The molecular connections between the proximity signal (low R:FR) and a model physiological response (increased elongation growth) have now been mapped in considerable detail in Arabidopsis seedlings. We briefly review our current understanding of these connections and discuss recent progress in establishing the roles of other photoreceptors in regulating growth-related pathways in response to competition cues. We also consider processes other than elongation that are controlled by photoreceptors and contribute to plant fitness under variable light conditions, including photoresponses that optimize the utilization of soil resources. In examining recent advances in the field, we highlight emerging roles of phyB as a major modulator of hormones related to plant immunity, in particular salicylic acid and jasmonic acid (JA). Recent attempts to manipulate connections between light signals and defence in Arabidopsis suggest that it might be possible to improve crop health at high planting densities by targeting links between phyB and JA signalling.


Assuntos
Fenômenos Ecológicos e Ambientais , Luz , Fitocromo/metabolismo , Desenvolvimento Vegetal/efeitos da radiação , Transdução de Sinais
11.
Plant Cell Environ ; 40(5): 635-644, 2017 May.
Artigo em Inglês | MEDLINE | ID: mdl-27943325

RESUMO

Under conditions that involve a high risk of competition for light among neighbouring plants, shade-intolerant species often display increased shoot elongation and greater susceptibility to pathogens and herbivores. The functional links between morphological and defence responses to crowding are not well understood. In Arabidopsis, the protein JAZ10 is thought to play a key role connecting the inactivation of the photoreceptor phytochrome B (phyB), which takes place under competition for light, with the repression of jasmonate-mediated plant defences. Here, we show that a null mutation of the JAZ10 gene in Arabidopsis did not affect plant growth nor did it suppress the shade-avoidance responses elicited by phyB inactivation. However, the jaz10 mutation restored many of the defence traits that are missing in the phyB mutant, including the ability to express robust responses to jasmonate and to accumulate indolic glucosinolates. Furthermore, the jaz10phyB double mutant showed a significantly increased resistance to the pathogenic fungus Botrytis cinerea compared with the phyB parental line. Our results demonstrate that, by inactivating JAZ10, it is possible to partially uncouple shade avoidance from defence suppression in Arabidopsis. These findings may provide clues to improve plant resistance to pathogens in crops that are planted at high density.


Assuntos
Proteínas de Arabidopsis/metabolismo , Proteínas de Arabidopsis/fisiologia , Arabidopsis/crescimento & desenvolvimento , Proteínas Nucleares/metabolismo , Proteínas Nucleares/fisiologia , Fitocromo B/metabolismo , Imunidade Vegetal , Arabidopsis/genética , Arabidopsis/imunologia , Arabidopsis/fisiologia , Botrytis/fisiologia , Ciclopentanos/metabolismo , Resistência à Doença/efeitos da radiação , Regulação da Expressão Gênica de Plantas/efeitos da radiação , Genes de Plantas , Glucosinolatos/metabolismo , Luz , Mutação/genética , Oxilipinas/metabolismo , Doenças das Plantas/imunologia , Doenças das Plantas/microbiologia , Imunidade Vegetal/efeitos da radiação , Regulação para Cima/genética , Regulação para Cima/efeitos da radiação
12.
New Phytol ; 212(4): 1057-1071, 2016 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-27689843

RESUMO

Under conditions of competition for light, which lead to the inactivation of the photoreceptor phytochrome B (phyB), the growth of shade-intolerant plants is promoted and the accumulation of direct anti-herbivore defenses is down-regulated. Little is known about the effects of phyB on emissions of volatile organic compounds (VOCs), which play a major role as informational cues in indirect defense. We investigated the effects of phyB on direct and indirect defenses in tomato (Solanum lycopersicum) using two complementary approaches to inactivate phyB: illumination with a low red to far-red ratio, simulating competition, and mutation of the two PHYB genes present in the tomato genome. Inactivation of phyB resulted in low levels of constitutive defenses and down-regulation of direct defenses induced by methyl jasmonate (MeJA). Interestingly, phyB inactivation also had large effects on the blends of VOCs induced by MeJA. Moreover, in two-choice bioassays using MeJA-induced plants, the predatory mirid bug Macrolophus pygmaeus preferred VOCs from plants in which phyB was inactivated over VOCs from control plants. These results suggest that, in addition to repressing direct defense, phyB inactivation has consequences for VOC-mediated tritrophic interactions in canopies, presumably attracting predators to less defended plants, where they are likely to find more abundant prey.


Assuntos
Herbivoria , Fitocromo B/metabolismo , Comportamento Predatório , Solanum lycopersicum/metabolismo , Solanum lycopersicum/parasitologia , Compostos Orgânicos Voláteis/metabolismo , Animais , Ciclopentanos/farmacologia , Análise Discriminante , Regulação da Expressão Gênica de Plantas/efeitos dos fármacos , Análise dos Mínimos Quadrados , Lepidópteros/fisiologia , Solanum lycopersicum/genética , Solanum lycopersicum/imunologia , Oxilipinas/farmacologia , Folhas de Planta/efeitos dos fármacos , Folhas de Planta/fisiologia , Tricomas/ultraestrutura
13.
Plant Cell Environ ; 38(5): 920-8, 2015 May.
Artigo em Inglês | MEDLINE | ID: mdl-24811566

RESUMO

Solar UV-B radiation (280-315 nm) has a significant influence on trophic relationships in natural and managed ecosystems, affecting plant-insect interactions. We explored the effects of ambient UV-B radiation on the levels of herbivory by stink bugs (Nezara viridula and Piezodorus guildinii) in field-grown soybean crops. The experiments included two levels of UV-B radiation (ambient and attenuated UV-B) and four soybean cultivars known to differ in their content of soluble leaf phenolics. Ambient UV-B radiation increased the accumulation of the isoflavonoids daidzin and genistin in the pods of all cultivars. Soybean crops grown under attenuated UV-B had higher numbers of unfilled pods and damaged seeds than crops grown under ambient UV-B radiation. Binary choice experiments with soybean branches demonstrated that stink bugs preferred branches of the attenuated UV-B treatment. We found a positive correlation between percentage of undamaged seeds and the contents of daidzin and genistin in pods. Our results suggest that constitutive and UV-B-induced isoflavonoids increase plant resistance to stink bugs under field conditions.


Assuntos
Genisteína/metabolismo , Glycine max/efeitos da radiação , Herbivoria , Heterópteros , Isoflavonas/metabolismo , Animais , Frutas/metabolismo , Glycine max/metabolismo , Raios Ultravioleta
14.
New Phytol ; 204(2): 342-54, 2014 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-25236170

RESUMO

Shade-intolerant plants respond to low red : far-red (R : FR) ratios, which signal the proximity of potential competitors, by down-regulating immune responses. Here we investigated the mechanisms underlying this immune suppression in Arabidopsis. We used genetic, transcriptomic and metabolomic approaches to examine the functional connections between R : FR ratio and Arabidopsis resistance to the fungus Botrytis cinerea. Low R : FR ratios reduced the concentration of indol-3-ylmethyl glucosinolate (I3M) (an indolic glucosinolate, iGS) and camalexin in plants inoculated with B. cinerea, and attenuated the I3M response triggered by jasmonate elicitation. These effects on metabolite abundance correlated with reduced expression of iGS and camalexin biosynthetic genes. Furthermore, the effect of low R : FR increasing Arabidopsis susceptibility to B. cinerea was not present in mutants deficient in the biosynthesis of camalexin (pad3) or metabolism of iGS (pen2). Finally, in a mutant deficient in the JASMONATE ZIM DOMAIN-10 (JAZ10) protein, which does not respond to low R : FR with increased susceptibility to B. cinerea, supplemental FR failed to down-regulate iGS production. These results indicate that suppression of Arabidopsis immunity against B. cinerea by low R : FR ratios is mediated by reduced levels of Trp-derived defenses, and provide further evidence for a functional role of JAZ10 in the link between phytochrome and jasmonate signaling.


Assuntos
Proteínas de Arabidopsis/metabolismo , Arabidopsis/imunologia , Glucosinolatos/metabolismo , Indóis/metabolismo , Proteínas Nucleares/metabolismo , Fitocromo/metabolismo , Doenças das Plantas/imunologia , Tiazóis/metabolismo , Arabidopsis/genética , Arabidopsis/metabolismo , Arabidopsis/efeitos da radiação , Proteínas de Arabidopsis/genética , Vias Biossintéticas , Botrytis/fisiologia , Ciclopentanos/metabolismo , Suscetibilidade a Doenças , Regulação da Expressão Gênica de Plantas , Glucosinolatos/química , Ácidos Indolacéticos/metabolismo , Indóis/química , Mutação , Proteínas Nucleares/genética , Oxilipinas/metabolismo , Doenças das Plantas/microbiologia , Imunidade Vegetal , Folhas de Planta/genética , Folhas de Planta/imunologia , Folhas de Planta/metabolismo , Folhas de Planta/efeitos da radiação , Transdução de Sinais , Tiazóis/química
15.
New Phytol ; 204(2): 355-67, 2014 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-25103816

RESUMO

How plants balance resource allocation between growth and defense under conditions of competitive stress is a key question in plant biology. Low red : far-red (R : FR) ratios, which signal a high risk of competition in plant canopies, repress jasmonate-induced defense responses. The mechanism of this repression is not well understood. We addressed this problem in Arabidopsis by investigating the role of DELLA and JASMONATE ZIM domain (JAZ) proteins. We showed that a quintuple della mutant and a phyB mutant were insensitive to jasmonate for several physiological readouts. Inactivation of the photoreceptor phyB by low R : FR ratios rapidly reduced DELLA protein abundance, and the inhibitory effect of FR on jasmonate signaling was missing in the gai-1 mutant, which encodes a stable version of the GAI DELLA protein. We also demonstrated that low R : FR ratios and the phyB mutation stabilized the protein JAZ10. Furthermore, we demonstrated that JAZ10 was required for the inhibitory effect of low R : FR on jasmonate responses, and that the jaz10 mutation restored jasmonate sensitivity to the phyB mutant. We conclude that, under conditions of competition for light, plants redirect resource allocation from defense to rapid elongation by promoting DELLA degradation and enhancing JAZ10 stability.


Assuntos
Proteínas de Arabidopsis/metabolismo , Arabidopsis/fisiologia , Regulação da Expressão Gênica de Plantas , Proteínas Nucleares/metabolismo , Fitocromo B/metabolismo , Reguladores de Crescimento de Plantas/metabolismo , Arabidopsis/genética , Arabidopsis/imunologia , Arabidopsis/efeitos da radiação , Proteínas de Arabidopsis/genética , Ciclopentanos/metabolismo , Giberelinas/metabolismo , Luz , Mutação , Proteínas Nucleares/genética , Oxilipinas/metabolismo , Fitocromo B/genética , Estabilidade Proteica , Proteólise , Plântula , Transdução de Sinais
16.
Plant Cell Environ ; 37(8): 1845-53, 2014 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-24689452

RESUMO

Although plants are sessile organisms, they can modulate their phenotype so as to cope with environmental stresses such as herbivore attack and competition with neighbouring plants. Plant-produced volatile compounds mediate various aspects of plant defence. The emission of volatiles has costs and benefits. Research on the role of plant volatiles in defence has focused primarily on the responses of individual plants. However, in nature, plants rarely occur as isolated individuals but are members of plant communities where they compete for resources and exchange information with other plants. In this review, we address the effects of neighbouring plants on plant volatile-mediated defences. We will outline the various roles of volatile compounds in the interactions between plants and other organisms, address the mechanisms of plant neighbour perception in plant communities, and discuss how neighbour detection and volatile signalling are interconnected. Finally, we will outline the most urgent questions to be addressed in the future.


Assuntos
Ecossistema , Fenômenos Fisiológicos Vegetais , Plantas/química , Compostos Orgânicos Voláteis/química , Animais , Herbivoria
17.
Oecologia ; 176(1): 1-10, 2014 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-24894371

RESUMO

Plant responses to competition have often been described as passive consequences of reduced resource availability. However, plants have mechanisms to forage for favorable conditions and anticipate competition scenarios. Despite the progresses made in understanding the role of light signaling in modulating plant-plant interactions, little is known about how plants use and integrate information gathered by their photoreceptors aboveground to regulate performance belowground. Given that the phytochrome family of photoreceptors plays a key role in the acquisition of information about the proximity of neighbors and canopy cover, it is tempting to speculate that changes in the red:far-red (R:FR) ratio perceived by aboveground plant parts have important implications shaping plant behavior belowground. Exploring data from published experiments, we assess the neglected role of light signaling in the control of root function. The available evidence indicates that plant exposure to low R:FR ratios affects root growth and morphology, root exudate profiles, and interactions with beneficial soil microorganisms. Although dependent on species identity, signals perceived aboveground are likely to affect root-to-root interactions. Root systems could also be guided to deploy new growth predominantly in open areas by light signals perceived by the shoots. Studying interactions between above- and belowground plant-plant signaling is expected to improve our understanding of the mechanisms of plant competition.


Assuntos
Ecossistema , Transdução de Sinal Luminoso/fisiologia , Luz , Modelos Biológicos , Fenômenos Fisiológicos Vegetais , Raízes de Plantas/crescimento & desenvolvimento , Microbiologia do Solo , Fitocromo B/metabolismo , Raízes de Plantas/metabolismo , Simbiose
18.
J Chem Ecol ; 40(7): 848-57, 2014 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-25063023

RESUMO

Plant immunity against pathogens and herbivores is a central determinant of plant fitness in nature and crop yield in agroecosystems. Plant immune responses are orchestrated by two key hormones: jasmonic acid (JA) and salicylic acid (SA). Recent work has demonstrated that for plants of shade-intolerant species, which include the majority of those grown as grain crops, light is a major modulator of defense responses. Light signals that indicate proximity of competitors, such as a low red to far-red (R:FR) ratio, down-regulate the expression of JA- and SA-induced immune responses against pests and pathogens. This down-regulation of defense under low R:FR ratios, which is caused by the photoconversion of the photoreceptor phytochrome B (phyB) to an inactive state, is likely to help the plant to efficiently redirect resources to rapid growth when the competition threat posed by neighboring plants is high. This review is focused on the molecular mechanisms that link phyB with defense signaling. In particular, we discuss novel signaling players that are likely to play a role in the repression of defense responses under low R:FR ratios. A better understanding of the molecular connections between photoreceptors and the hormonal regulation of plant immunity will provide a functional framework to understand the mechanisms used by plants to deal with fundamental resource allocation trade-offs under dynamic conditions of biotic stress.


Assuntos
Fitocromo/metabolismo , Imunidade Vegetal , Plantas/metabolismo , Ciclopentanos/metabolismo , Regulação da Expressão Gênica de Plantas , Oxilipinas/metabolismo , Proteínas de Plantas/metabolismo , Ácido Salicílico/metabolismo , Transdução de Sinais , Fatores de Transcrição/metabolismo
19.
Plant Physiol ; 158(4): 2042-52, 2012 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-22371506

RESUMO

Light is an important modulator of plant immune responses. Here, we show that inactivation of the photoreceptor phytochrome B (phyB) by a low red/far-red ratio (R:FR), which is a signal of competition in plant canopies, down-regulates the expression of defense markers induced by the necrotrophic fungus Botrytis cinerea, including the genes that encode the transcription factor ETHYLENE RESPONSE FACTOR1 (ERF1) and the plant defensin PLANT DEFENSIN1.2 (PDF1.2). This effect of low R:FR correlated with a reduced sensitivity to jasmonate (JA), thus resembling the antagonistic effects of salicylic acid (SA) on JA responses. Low R:FR failed to depress PDF1.2 mRNA levels in a transgenic line in which PDF1.2 transcription was up-regulated by constitutive expression of ERF1 in a coronatine insensitive1 (coi1) mutant background (35S::ERF1/coi1). These results suggest that the low R:FR effect, in contrast to the SA effect, requires a functional SCFCOI1-JASMONATE ZIM-DOMAIN (JAZ) JA receptor module. Furthermore, the effect of low R:FR depressing the JA response was conserved in mutants impaired in SA signaling (sid2-1 and npr1-1). Plant exposure to low R:FR ratios and the phyB mutation markedly increased plant susceptibility to B. cinerea; the effect of low R:FR was (1) independent of the activation of the shade-avoidance syndrome, (2) conserved in the sid2-1 and npr1-1 mutants, and (3) absent in two RNA interference lines disrupted for the expression of the JAZ10 gene. Collectively, our results suggest that low R:FR ratios depress Arabidopsis (Arabidopsis thaliana) immune responses against necrotrophic microorganisms via a SA-independent mechanism that requires the JAZ10 transcriptional repressor and that this effect may increase plant susceptibility to fungal infection in dense canopies.


Assuntos
Proteínas de Arabidopsis/metabolismo , Arabidopsis/imunologia , Arabidopsis/microbiologia , Botrytis/fisiologia , Resistência à Doença/efeitos da radiação , Luz , Proteínas Nucleares/metabolismo , Antocianinas/metabolismo , Arabidopsis/efeitos dos fármacos , Arabidopsis/efeitos da radiação , Proteínas de Arabidopsis/genética , Botrytis/efeitos dos fármacos , Botrytis/efeitos da radiação , Ciclopentanos/farmacologia , Resistência à Doença/efeitos dos fármacos , Regulação para Baixo/efeitos dos fármacos , Regulação para Baixo/efeitos da radiação , Regulação da Expressão Gênica de Plantas/efeitos dos fármacos , Regulação da Expressão Gênica de Plantas/efeitos da radiação , Genes de Plantas/genética , Mutação/genética , Proteínas Nucleares/genética , Oxilipinas/farmacologia , Fenóis/metabolismo , Fenótipo , Fitocromo B/metabolismo , Doenças das Plantas/imunologia , Doenças das Plantas/microbiologia , Ácido Salicílico/farmacologia , Transdução de Sinais/efeitos dos fármacos , Transdução de Sinais/efeitos da radiação
20.
Physiol Plant ; 147(3): 307-15, 2013 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-22671980

RESUMO

Ultraviolet-B radiation (UV-B: 280-315 nm) has damaging effects on cellular components and macromolecules. In plants, natural levels of UV-B can reduce leaf area expansion and growth, which can lead to reduced productivity and yield. UV-B can also have important effects on herbivorous insects. Owing to the successful implementation of the Montreal Protocol, current models predict that clear-sky levels of UV-B radiation will decline during this century in response to ozone recovery. However, because of climate change and changes in land use practices, future trends in UV doses are difficult to predict. In the experiments reported here, we used an exclusion approach to study the effects of solar UV-B radiation on soybean crops, which are extensively grown in many areas of the world that may be affected by future variations in UV-B radiation. In a first experiment, performed under normal management practices (which included chemical pest control), we found that natural levels of UV-B radiation reduced soybean yield. In a second experiment, where no pesticides were applied, we found that solar UV-B significantly reduced insect herbivory and, surprisingly, caused a concomitant increase in crop yield. Our data support the idea that UV-B effects on agroecosystems are the result of complex interactions involving multiple trophic levels. A better understanding of the mechanisms that mediate the anti-herbivore effect of UV-B radiation may be used to design crop varieties with improved adaptation to the cropping systems that are likely to prevail in the coming decades in response to agricultural intensification.


Assuntos
Glycine max/efeitos da radiação , Insetos/fisiologia , Raios Ultravioleta , Animais , Antioxidantes/metabolismo , Ascorbato Peroxidases/metabolismo , Biomassa , Catalase/metabolismo , Clorofila/metabolismo , Produtos Agrícolas , Herbivoria , Folhas de Planta/química , Energia Solar , Glycine max/crescimento & desenvolvimento , Luz Solar
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA