Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Mais filtros

Base de dados
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
Nature ; 515(7526): 261-3, 2014 Nov 13.
Artigo em Inglês | MEDLINE | ID: mdl-25141177

RESUMO

Genetic diversity is the amount of variation observed between DNA sequences from distinct individuals of a given species. This pivotal concept of population genetics has implications for species health, domestication, management and conservation. Levels of genetic diversity seem to vary greatly in natural populations and species, but the determinants of this variation, and particularly the relative influences of species biology and ecology versus population history, are still largely mysterious. Here we show that the diversity of a species is predictable, and is determined in the first place by its ecological strategy. We investigated the genome-wide diversity of 76 non-model animal species by sequencing the transcriptome of two to ten individuals in each species. The distribution of genetic diversity between species revealed no detectable influence of geographic range or invasive status but was accurately predicted by key species traits related to parental investment: long-lived or low-fecundity species with brooding ability were genetically less diverse than short-lived or highly fecund ones. Our analysis demonstrates the influence of long-term life-history strategies on species response to short-term environmental perturbations, a result with immediate implications for conservation policies.


Assuntos
Evolução Molecular , Variação Genética/genética , Genética Populacional , Genoma/genética , Genômica , Filogenia , Animais , Ecologia
2.
Mol Ecol ; 25(14): 3356-69, 2016 07.
Artigo em Inglês | MEDLINE | ID: mdl-27286413

RESUMO

Comparative population genetics in asexual vs. sexual species offers the opportunity to investigate the impact of asexuality on genome evolution. Here, we analyse coding sequence polymorphism and divergence patterns in the fascinating Lineus ribbon worms, a group of marine, carnivorous nemerteans with unusual regeneration abilities, and in which asexual reproduction by fissiparity is documented. The population genomics of the fissiparous L. pseudolacteus is characterized by an extremely high level of heterozygosity and unexpectedly elevated πN /πS ratio, in apparent agreement with theoretical expectations under clonal evolution. Analysis of among-species allele sharing and read-count distribution, however, reveals that L. pseudolacteus is a triploid hybrid between Atlantic populations of L. sanguineus and L. lacteus. We model and quantify the relative impact of hybridity, polyploidy and asexuality on molecular variation patterns in L. pseudolacteus and conclude that (i) the peculiarities of L. pseudolacteus population genomics result in the first place from hybridization and (ii) the accumulation of new mutations through the Meselson effect is more than compensated by processes of heterozygosity erosion, such as gene conversion or gene copy loss. This study illustrates the complexity of the evolutionary processes associated with asexuality and identifies L. pseudolacteus as a promising model to study the first steps of polyploid genome evolution in an asexual context.


Assuntos
Evolução Biológica , Genética Populacional , Invertebrados/genética , Poliploidia , Transcriptoma , Animais , DNA Mitocondrial/genética , Genótipo , Heterozigoto , Hibridização Genética , Filogenia , Reprodução/genética , Reprodução Assexuada/genética
3.
J Evol Biol ; 27(3): 593-603, 2014 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-26227898

RESUMO

The evolution of reproductive division of labour and social life in social insects has lead to the emergence of several life-history traits and adaptations typical of larger organisms: social insect colonies can reach masses of several kilograms, they start reproducing only when they are several years old, and can live for decades. These features and the monopolization of reproduction by only one or few individuals in a colony should affect molecular evolution by reducing the effective population size. We tested this prediction by analysing genome-wide patterns of coding sequence polymorphism and divergence in eusocial vs. noneusocial insects based on newly generated RNA-seq data. We report very low amounts of genetic polymorphism and an elevated ratio of nonsynonymous to synonymous changes ­ a marker of the effective population size ­ in four distinct species of eusocial insects, which were more similar to vertebrates than to solitary insects regarding molecular evolutionary processes. Moreover, the ratio of nonsynonymous to synonymous substitutions was positively correlated with the level of social complexity across ant species. These results are fully consistent with the hypothesis of a reduced effective population size and an increased genetic load in eusocial insects, indicating that the evolution of social life has important consequences at both the genomic and population levels.


Assuntos
Genômica , Insetos/genética , Densidade Demográfica , Animais , Insetos/classificação , Filogenia , Transcriptoma
4.
Mol Ecol Resour ; 14(4): 820-30, 2014 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-24447767

RESUMO

Use of SNPs has been favoured due to their abundance in plant and animal genomes, accompanied by the falling cost and rising throughput capacity for detection and genotyping. Here, we present in vitro (obtained from targeted sequencing) and in silico discovery of SNPs, and the design of medium-throughput genotyping arrays for two oyster species, the Pacific oyster, Crassostrea gigas, and European flat oyster, Ostrea edulis. Two sets of 384 SNP markers were designed for two Illumina GoldenGate arrays and genotyped on more than 1000 samples for each species. In each case, oyster samples were obtained from wild and selected populations and from three-generation families segregating for traits of interest in aquaculture. The rate of successfully genotyped polymorphic SNPs was about 60% for each species. Effects of SNP origin and quality on genotyping success (Illumina functionality Score) were analysed and compared with other model and nonmodel species. Furthermore, a simulation was made based on a subset of the C. gigas SNP array with a minor allele frequency of 0.3 and typical crosses used in shellfish hatcheries. This simulation indicated that at least 150 markers were needed to perform an accurate parental assignment. Such panels might provide valuable tools to improve our understanding of the connectivity between wild (and selected) populations and could contribute to future selective breeding programmes.


Assuntos
Crassostrea/classificação , Crassostrea/genética , Técnicas de Genotipagem/métodos , Ostrea/classificação , Ostrea/genética , Polimorfismo de Nucleotídeo Único , Animais , Aquicultura , Biologia Computacional/métodos
5.
Mol Ecol Resour ; 12(5): 834-45, 2012 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-22540679

RESUMO

Next-generation sequencing (NGS) technologies offer the opportunity for population genomic study of non-model organisms sampled in the wild. The transcriptome is a convenient and popular target for such purposes. However, designing genetic markers from NGS transcriptome data requires assembling gene-coding sequences out of short reads. This is a complex task owing to gene duplications, genetic polymorphism, alternative splicing and transcription noise. Typical assembling programmes return thousands of predicted contigs, whose connection to the species true gene content is unclear, and from which SNP definition is uneasy. Here, the transcriptomes of five diverse non-model animal species (hare, turtle, ant, oyster and tunicate) were assembled from newly generated 454 and Illumina sequence reads. In two species for which a reference genome is available, a new procedure was introduced to annotate each predicted contig as either a full-length cDNA, fragment, chimera, allele, paralogue, genomic sequence or other, based on the number of, and overlap between, blast hits to the appropriate reference. Analyses showed that (i) the highest quality assemblies are obtained when 454 and Illumina data are combined, (ii) typical de novo assemblies include a majority of irrelevant cDNA predictions and (iii) assemblies can be appropriately cleaned by filtering contigs based on length and coverage. We conclude that robust, reference-free assembly of thousands of genes from transcriptomic NGS data is possible, opening promising perspectives for transcriptome-based population genomics in animals. A Galaxy pipeline implementing our best-performing assembling strategy is provided.


Assuntos
Biologia Computacional/métodos , Sequenciamento de Nucleotídeos em Larga Escala/métodos , Transcriptoma , Animais
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA