Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 72
Filtrar
1.
Chembiochem ; 25(5): e202300748, 2024 03 01.
Artigo em Inglês | MEDLINE | ID: mdl-38240074

RESUMO

Understanding α-synuclein aggregation is crucial in the context of Parkinson's disease. The objective of this study was to investigate the influence of aggregation induced by preformed seeding on the volume of oligomers during the early stages, using a label-free, single-molecule characterization approach. By utilizing nanopipettes of varying sizes, the volume of the oligomers can be calculated from the amplitude of the current blockade and pipette geometry. Further investigation of the aggregates formed over time in the presence of added seeds revealed an acceleration in the formation of large aggregates and the existence of multiple distinct populations of oligomers. Additionally, we observed that spontaneously formed seeds inhibited the formation of smaller oligomers, in contrast to the effect of HNE seeds. These results suggest that the seeds play a crucial role in the formation of oligomers and their sizes during the early stages of aggregation, whereas the classical thioflavin T assay remains negative.


Assuntos
Doença de Parkinson , alfa-Sinucleína , Bioensaio , Sementes
2.
Anal Chem ; 95(34): 12623-12630, 2023 08 29.
Artigo em Inglês | MEDLINE | ID: mdl-37587130

RESUMO

In this work, early-stage Aß42 aggregates were detected using a real-time fast amyloid seeding and translocation (RT-FAST) assay. Specifically, Aß42 monomers were incubated in buffer solution with and without preformed Aß42 seeds in a quartz nanopipette coated with L-DOPA. Then, formed Aß42 aggregates were analyzed on flyby resistive pulse sensing at various incubation time points. Aß42 aggregates were detected only in the sample with Aß42 seeds after 180 min of incubation, giving an on/off readout of the presence of preformed seeds. Moreover, this RT-FAST assay could detect preformed seeds spiked in 4% cerebrospinal fluid/buffer solution. However, in this condition, the time to detect the first aggregates was increased. Analysis of Cy3-labeled Aß42 monomer adsorption on a quartz substrate after L-DOPA coating by confocal fluorescence spectroscopy and molecular dynamics simulation showed the huge influence of Aß42 adsorption on the aggregation process.


Assuntos
Levodopa , Quartzo , Proteínas Amiloidogênicas , Sementes
3.
Anal Chem ; 93(22): 7889-7897, 2021 06 08.
Artigo em Inglês | MEDLINE | ID: mdl-34038092

RESUMO

Protein detection and identification at the single-molecule level are major challenges in many biotechnological fields. Solid-state nanopores have raised attention as label-free biosensors with high sensitivity. Here, we use solid-state nanopore sensing to discriminate two closely related proteins, α-thrombin and γ-thrombin. We show that aptamer functionalization improves protein discrimination thanks to a significant difference in the relative current blockade amplitude. To enhance discrimination, we postprocessed the signals using machine learning and training algorithms and we were able to reach an accuracy of 98.8% using seven features and ensemble methods.


Assuntos
Técnicas Biossensoriais , Nanoporos , Nanotecnologia , Proteínas , Trombina
4.
J Chem Phys ; 154(10): 104901, 2021 Mar 14.
Artigo em Inglês | MEDLINE | ID: mdl-33722042

RESUMO

Solid-state nanopores are a promising platform for characterizing proteins. In order to improve their lifetime and prevent fouling, Polyethylene Glycol (PEG) grafting is one of the most efficient and low-cost solutions. Different models to calculate the PEG thickness do not consider their interaction with the nanopore inner surface nor the effect of confinement. Here, we investigate by molecular dynamic simulation the PEG conformation inside a nanopore in the case of hydrophobic and hydrophilic nanopores. Our results reveal that the nanopore inner surface plays a role in the PEG organization and, thus, in the speed of the salt constituent. The resulting pair interaction between PEG and its environment clearly shows a more important affinity for K+ compared to Li+ cations.

5.
Nat Mater ; 18(10): 1112-1117, 2019 10.
Artigo em Inglês | MEDLINE | ID: mdl-31451779

RESUMO

Nanolaminate membranes made of two-dimensional materials such as graphene oxide are promising candidates for molecular sieving via size-limited diffusion in the two-dimensional capillaries, but high hydrophilicity makes these membranes unstable in water. Here, we report a nanolaminate membrane based on covalently functionalized molybdenum disulfide (MoS2) nanosheets. The functionalized MoS2 membranes demonstrate >90% and ~87% rejection for micropollutants and NaCl, respectively, when operating under reverse osmotic conditions. The sieving performance and water flux of the functionalized MoS2 membranes are attributed both to control of the capillary widths of the nanolaminates and to control of the surface chemistry of the nanosheets. We identify small hydrophobic functional groups, such as the methyl group, as the most promising for water purification. Methyl- functionalized nanosheets show high water permeation rates as confirmed by our molecular dynamic simulations, while maintaining high NaCl rejection. Control of the surface chemistry and the interlayer spacing therefore offers opportunities to tune the selectivity of the membranes while enhancing their stability.

6.
Soft Matter ; 16(4): 1002-1010, 2020 Jan 28.
Artigo em Inglês | MEDLINE | ID: mdl-31853534

RESUMO

We report results from full atomistic molecular dynamics simulations on the properties of biomimetic nanopores. This latter result was obtained through the direct insertion of an α-hemolysin protein inside a hydrophobic solid-state nanopore. Upon translocation of different DNA strands, we demonstrate here that the theoretical system presents the same discrimination properties as the experimental one obtained previously. This opens an interesting way to promote the stability of a specific protein inside a solid nanopore to develop further biomimetic applications for DNA or protein sequencing.


Assuntos
DNA/química , Proteínas Hemolisinas/química , Polinucleotídeos/química , Sequência de Aminoácidos/genética , Biomimética , Proteínas Hemolisinas/genética , Interações Hidrofóbicas e Hidrofílicas , Simulação de Dinâmica Molecular , Nanoporos/ultraestrutura
7.
Anal Chem ; 90(21): 12900-12908, 2018 11 06.
Artigo em Inglês | MEDLINE | ID: mdl-30189140

RESUMO

Amyloid fibrils are involved in several neurodegenerative diseases. However, because of their polymorphism and low concentration, they are challenging to assess in real-time with conventional techniques. Here, we present a new approach for the characterization of the intermediates: protofibrils and "end-off" aggregates which are produced during the amyloid formation. To do so, we have fashioned conical track-etched nanopores that are functionalized to prevent the fouling. Using these nanopores, we have followed the kinetic of amyloid growth to discriminate the different intermediates protofibrils and "end-off. Then, the nanopore was used to characterize the effect of promoter and inhibitor of the fibrillation process. Finally, we have followed in real-time the degradation of amyloid with peptase. Compare with the SiN nanopore, the track-etched one features exceptionally high success rate via functionalization and detection in "one-pot". Our results demonstrate the potential for a conical nanopore to be used as a routine technique for the characterization of the amyloid growth and/or degradation.


Assuntos
Amiloide/química , Lactoglobulinas/química , Nanoporos , Multimerização Proteica , Proteólise , Amiloide/antagonistas & inibidores , Curcumina/química , Sulfato de Dextrana/química , Etanol/química , Concentração de Íons de Hidrogênio , Cinética , Nanoporos/ultraestrutura , Pepsina A/química , Polietilenoglicóis/química , Multimerização Proteica/efeitos dos fármacos , Quercetina/química
8.
Langmuir ; 34(11): 3405-3412, 2018 03 20.
Artigo em Inglês | MEDLINE | ID: mdl-29466014

RESUMO

Single conical nanopores were functionalised layer by layer with weak polyelectrolytes. We studied their influence on the ionic diode properties We have considered different couples of polyelectrolytes: poly-l-lysine/poly(acrylic acid) and poly(ethyleneimine)/poly(acrylic acid) as well as the influence of cross-linking. The results show that the nanopores decorated with poly(ethyleneimine)/poly(acrylic acid) exhibit an interesting behavior. Indeed, at pH 3, the nanopore is open only at the low salt concentration, while at pH 7, it is already open. The nanopores functionalized with poly-l-lysine/poly(acrylic acid) do not show an inversion of ionic transport properties with the pH as expected. After cross-linked to prevent large conformational changes, the ionic diode properties are dependent on the pH.

9.
Langmuir ; 34(30): 8866-8874, 2018 07 31.
Artigo em Inglês | MEDLINE | ID: mdl-30001624

RESUMO

The understanding of the interactions between nanomaterials, biomolecules, and polyphenols is fundamental in food chemistry, toxicology, and new emerging fields, such as nanomedicine. Here, we investigated the effect of the resveratrol, a principal actor in drug-delivery application on the interaction between bovine serum albumin (BSA), employed as a vector for the delivery of polyphenol drugs, and gold nanoparticle (gNP), the most promising tool in theranostic applications. Through a combination of experimental techniques, which includes an initial evaluation by dynamic light scattering and surface plasmon resonance spectroscopy, we were able to evaluate the evolution of the gold nanoparticle aggregation with increasing ionic strength and the consequences of the BSA and resveratrol addition. To investigate the mechanisms of the interactions, we pursued at the single-molecule level using solid-state nanopore and fluorescence correlation spectroscopy. Our results show that without resveratrol, the BSA is adsorbed on the gNP in water or saline solution. In the presence of resveratrol, the BSA is normally absorbed on gNP in water, but the salt addition leads to its desorption. The resveratrol clearly plays a fundamental role, changing the protein behavior and making the BSA adsorption a reversible process in the presence of salt.


Assuntos
Adsorção/efeitos dos fármacos , Ouro , Nanopartículas Metálicas/química , Resveratrol/farmacologia , Soroalbumina Bovina , Difusão Dinâmica da Luz , Ouro/química , Ressonância de Plasmônio de Superfície
10.
Langmuir ; 34(4): 1542-1549, 2018 01 30.
Artigo em Inglês | MEDLINE | ID: mdl-29278504

RESUMO

This article presents a novel procedure for preparing porous membranes from water-soluble polymers involving the formation of a Pickering emulsion. Gelatin is a biodegradable biopolymer obtained by the partial hydrolysis of collagen. A biopolymer such as gelatin is capable of adsorbing at an oil/water interface, resulting in decreased interfacial energy. Hence, gelatin is widely employed as an alternate for synthetic surfactants to stabilize emulsions in the food industry. However, high-molecular-weight gelatin leads to large emulsion droplets and poor emulsion stability. The amphoteric nature of graphene oxide (GO) nanosheets was helpful in stabilizing the oil/water interface and allows for the preparation of a stable gelatin/GO emulsion. Membranes fabricated using gelatin/GO have a uniformly distributed porous structure. However, prepared membranes are highly hydrosoluble, so the membranes were cross-linked without affecting their morphology. XRD results evidenced that gelatin effectively exfoliated the graphite oxide which is essential to stabilizing the emulsion. Fabricated gelatin/GO membranes possess uniformly distributed pores and are highly stable in aqueous solution. Pure water filtration tests were conducted on the membranes. The permeability results proved that the membranes fabricated by a Pickering emulsion are promising materials for filtration.

11.
Faraday Discuss ; 210(0): 69-85, 2018 10 01.
Artigo em Inglês | MEDLINE | ID: mdl-29992218

RESUMO

We investigated ionic transport behavior in the case of uncharged conical nanopores. To do so, we designed conical nanopores using atomic layer deposition of Al2O3/ZnO nanolaminates and then coated these with trimethylsilane. The experimental results are supported by molecular dynamics simulations. The ionic transport reveals an unexpected behavior: (i) a current rectification and (ii) a constant conductance at low salt concentration which are usually reported for charged conical nanopore. To explain these results, we have considered different assumptions: (i) a default of functionalization, (ii) the adsorption anion and (iii) the slippage. The first one was refuted by the study of the poly-l-lysine transport through the nanopore. To verify the second assumption, we investigate the effect of pH on the current rectification and the molecular dynamics simulations. Finally our study demonstrates that the unexpected ionic transport is provided to a predominant effect of slippage due to the water organization at the solid/liquid interface.

12.
Phys Chem Chem Phys ; 20(18): 12799-12807, 2018 May 09.
Artigo em Inglês | MEDLINE | ID: mdl-29697724

RESUMO

Solid-state nanopore technology for nanoparticle sensing is considered for the development of analytical tools to characterise their size, shape or zeta potential. In this field, it is crucial to understand how the nanopore inner surface influences the dynamic of nanoparticle translocation. Here, three single nanopores directly drilled in metal alloys (titanium nitride, titanium-tantalum and tantalum) are considered. The translocation of polystyrene nanoparticles coated with ssDNA is investigated by the resistive pulse method at different concentrations and voltages. The results show that the nanoparticle energy barrier for entrance into the pore decreases for nanopores that exhibits a higher surface energy and hydrophilicity, while the dwell time is found to depend on the nanopore surface state. Overall, this study demonstrates that the control of nanopore surface state must be taken into account for the resistive pulse experiments for nanoparticle detection.

13.
Langmuir ; 33(14): 3484-3490, 2017 04 11.
Artigo em Inglês | MEDLINE | ID: mdl-28345938

RESUMO

Biological channels have served as inspiration to design stimuli-response artificial nanopores. Here we propose an original approach to design a pH-gate nanopore based on polyethylenimine and chondroitin-4-sulfate (ChS) layer-by-layer self-assembly. This approach is interesting because it is rapid and permits monitoring in real time of functionalization. The study of ionic transport through these single nanopores reveals a selectivity on anions and pH-gate properties at low salt concentration. It is open at pH below 4 or 5 depending on salt concentration. These properties are explained by the modification of both charge and conformation of ChS as well as swelling of the polyelectrolyte complex.

14.
Langmuir ; 33(46): 13394-13400, 2017 11 21.
Artigo em Inglês | MEDLINE | ID: mdl-29087719

RESUMO

The formation of inverse Pickering emulsions using exfoliated hexagonal boron nitride (h-BN) as an effective particulate stabilizer without using any surfactants is reported for the first time. The stability and the type of h-BN Pickering emulsions formulated with different BN concentrations and by varying oil/water (o/w) ratios are studied and discussed. First the emulsion structure is analyzed microscopically through optical and epifluorescence microscopy and macroscopically by the study of the rheological behavior. The average droplet size decreases with h-BN concentration whereas the emulsions achieve good stability at 2 wt % BN concentrations and for a 1:1 o/w ratio. In all formulations, the emulsions are of water-in-oil (w/o) type due mainly to the hydrophobicity of h-BN.

15.
Protein Expr Purif ; 131: 42-50, 2017 03.
Artigo em Inglês | MEDLINE | ID: mdl-27825980

RESUMO

Influenza A virus displays one of the highest infection rates of all human viruses and therefore represents a severe human health threat associated with an important economical challenge. Influenza matrix protein 2 (M2) is a membrane protein of the viral envelope that forms a proton selective ion channel. Here we report the expression and native isolation of full length active M2 without mutations or fusions. The ability of the influenza virus to efficiently infect MDCK cells was used to express native M2 protein. Using a Calixarene detergents/surfactants based approach; we were able to solubilize most of M2 from the plasma membrane and purify it. The tetrameric form of native M2 was maintained during the protein preparation. Mass spectrometry shows that M2 was phosphorylated in its cytoplasmic tail (serine 64) and newly identifies an acetylation of the highly conserved Lysine 60. ELISA shows that solubilized and purified M2 was specifically recognized by M2 antibody MAB65 and was able to displace the antibody from M2 MDCK membranes. Using a bilayer voltage clamp measurement assay, we demonstrate a pH dependent proton selective ion channel activity. The addition of the M2 ion channel blocker amantadine allows a total inhibition of the channel activity, illustrating therefore the specificity of purified M2 activity. Taken together, this work shows the production and isolation of a tetrameric and functional native M2 ion channel that will pave the way to structural and functional characterization of native M2, conformational antibody development, small molecules compounds screening towards vaccine treatment.


Assuntos
Expressão Gênica , Vírus da Influenza A Subtipo H1N1 , Canais Iônicos , Proteínas da Matriz Viral , Animais , Membrana Celular/química , Membrana Celular/genética , Membrana Celular/metabolismo , Cães , Humanos , Vírus da Influenza A Subtipo H1N1/química , Vírus da Influenza A Subtipo H1N1/genética , Canais Iônicos/biossíntese , Canais Iônicos/química , Canais Iônicos/genética , Canais Iônicos/isolamento & purificação , Células Madin Darby de Rim Canino , Proteínas Recombinantes/biossíntese , Proteínas Recombinantes/química , Proteínas Recombinantes/genética , Proteínas Recombinantes/isolamento & purificação , Proteínas da Matriz Viral/biossíntese , Proteínas da Matriz Viral/química , Proteínas da Matriz Viral/genética , Proteínas da Matriz Viral/isolamento & purificação
16.
Soft Matter ; 13(2): 496-502, 2017 Jan 04.
Artigo em Inglês | MEDLINE | ID: mdl-27928571

RESUMO

The fundamental understanding of the transport mechanisms of objects across a single nanopore is one key point to develop Coulter counters at the nanoscale for macromolecule or nanoparticle detection. In this area, nanoparticles have been less investigated than biomacromolecules such as DNA or proteins due to their self-aggregation in the presence of salts. In this work, the transport of modified latex nanoparticles across solid-state nanopores was investigated. To prevent their aggregation, their surface was modified with a low molecular weight single strand DNA coating. Then the coated nanoparticles were successfully detected across a single pore material in 200 mM NaCl buffer. The experimental capture rate was compared to that of the predictive model. It reveals that the nanoparticle entrance inside the nanopore is mainly governed by diffusion and required a weak energy. For relative current blockades, the predictive model should take into account both the nanopore shape and the additional charge due to ssDNA coating.


Assuntos
DNA de Cadeia Simples/química , Látex/química , Nanopartículas/química , Nanoporos , Adsorção , Difusão
17.
J Membr Biol ; 249(3): 261-70, 2016 06.
Artigo em Inglês | MEDLINE | ID: mdl-26700625

RESUMO

Amphotericin B (AmB) is a well-known polyene which self-organizes into membrane cell in order to cause the cell death. Its specific action towards fungal cell is not fully understood but was proved to become from sterol composition. The mechanism was shown experimentally to require the formation of stable sterol/polyene couples which could then organize in a nanochannel. This would allow the leakage of ions responsible for the death of fungal cells, only. In this present study, we investigate the arrangement of AmB/sterols in biological membrane using molecular dynamic simulations in order to understand the role of the sterol structure on the antifungal action of the polyene. We show in particular that the nanochannels tend to close up when cell was composed with cholesterol (animal cell) due to strong interaction between amphotericin and sterol. On the other side, with ergosterol (fungal cell) the largest interactions between amphotericin and lipid membrane lead to the appearance of large hole that could favor the important leakage of ions and thus, the fungal cell death. This work appears as a good complement in the extensive studies linked to the understanding of the antifungal molecules in membrane cells.


Assuntos
Anfotericina B/química , Conformação Molecular , Simulação de Dinâmica Molecular , Esteróis/química , Membrana Celular/química , Ligação de Hidrogênio
18.
Langmuir ; 32(35): 8916-25, 2016 09 06.
Artigo em Inglês | MEDLINE | ID: mdl-27506271

RESUMO

For the past 2 decades, emerging single-nanopore technologies have opened the route to multiple sensing applications. Besides DNA sensing, the identification of proteins and amyloids is a promising field for early diagnosis. However, the influence of the interactions between the nanopore surface and proteins should be taken into account. In this work, we have selected three proteins (avidin, lysozyme, and IgG) that exhibit different affinities with the SiNx surface, and we have also examined lysozyme amyloid. Our results show that the piranha treatment of SiNx significantly decreases protein adsorption. Moreover, we have successfully detected all proteins (pore diameter 17 nm) and shown the possibility of discriminating between denatured lysozyme and its amyloid. For all proteins, the capture rates are lower than expected, and we evidence that they are correlated with the affinity of proteins to the surface. Our result confirms that proteins interacting only with the nanopore surface wall stay long enough to be detected. For lysozyme amyloid, we show that the use of the nanopore is suitable for determining the number of monomer units even if only the proteins interacting with the nanopore are detected.


Assuntos
Amiloide/análise , Avidina/análise , Imunoglobulina G/análise , Muramidase/análise , Compostos de Silício/química , Adsorção , Amiloide/química , Avidina/química , Técnicas Eletroquímicas , Imunoglobulina G/química , Cinética , Muramidase/química , Nanoporos/ultraestrutura , Soluções
19.
Soft Matter ; 12(22): 4903-11, 2016 Jun 14.
Artigo em Inglês | MEDLINE | ID: mdl-27157717

RESUMO

A water molecule is the foundation of life and is the primary compound in every living system. While many of its properties are understood in a bulk solvent, its behavior in a small hydrophobic nanopore still raises fundamental questions. For instance, a wetting/dewetting transition in a hydrophobic solid-state or a polymer nanopore occurs stochastically and can only be prevented by external physical stimuli. Controlling these transitions would be a primary requirement to improve many applications. Some biological channels, such as gramicidin A (gA) proteins, show a high rate of water and ion diffusion in their central subnanochannel while their external surface is highly hydrophobic. The diameter of this channel is significantly smaller than the inner size of the lowest artificial nanopore in which water drying occurs (i.e. 1.4 nm). In this paper, we propose an innovative idea to generate nanopore wetting as a result of which the application of an external field is no longer required. In a nanopore, the drying or wetting of the inner walls occurs randomly (in experiments and in simulations). However, we have shown how the confinement of gA, in a dried hydrophobic nanopore, rapidly generates a stable wetting of the latter. We believe that this simple idea, based on biomimetism, could represent a real breakthrough that could help to improve and develop new nanoscale applications.


Assuntos
Biomimética , Nanoporos , Molhabilidade , Difusão , Interações Hidrofóbicas e Hidrofílicas
20.
Nanotechnology ; 26(14): 144001, 2015 Apr 10.
Artigo em Inglês | MEDLINE | ID: mdl-25785663

RESUMO

We investigate the influence of a nanopore surface state and the addition of Mg(2+) on poly-adenosine translocation. To do so, two kinds of nanopores with a low aspect ratio (diameter ∼3-5 nm, length 30 nm) were tailored: the first one with a negative charge surface and the second one uncharged. It was shown that the velocity and the energy barrier strongly depend on the nanopore surface. Typically if the nanopore and polyA exhibit a similar charge, the macromolecule velocity increases and its global energy barrier of entrance in the nanopore decreases, as opposed to the non-charged nanopore. Moreover, the addition of a divalent chelating cation induces an increase of energy barrier of entrance, as expected. However, for a negative nanopore, this effect is counterbalanced by the inversion of the surface charge induced by the adsorption of divalent cations.


Assuntos
Nanoporos , Adenosina/química , Eletricidade , Magnésio/química , Nanoporos/ultraestrutura , Polímeros/química , Propriedades de Superfície
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA