Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros

Base de dados
Tipo de documento
Assunto da revista
País de afiliação
Intervalo de ano de publicação
1.
Int J Mol Sci ; 24(9)2023 Apr 24.
Artigo em Inglês | MEDLINE | ID: mdl-37175496

RESUMO

Metabolic diseases, particularly diabetes mellitus (DM), are significant global public health concerns. Despite the widespread use of standard-of-care therapies, cardiovascular disease (CVD) remains the leading cause of death among diabetic patients. Early and evidence-based interventions to reduce CVD are urgently needed. Large clinical trials have recently shown that sodium-glucose cotransporter-2 inhibitors (SGLT2i) and glucagon-like peptide-1 receptor agonists (GLP-1RA) ameliorate adverse cardiorenal outcomes in patients with type 2 DM. These quite unexpected positive results represent a paradigm shift in type 2 DM management, from the sole importance of glycemic control to the simultaneous improvement of cardiovascular outcomes. Moreover, SGLT2i is also found to be cardio- and nephroprotective in non-diabetic patients. Several mechanisms, which may be potentially independent or at least separate from the reduction in blood glucose levels, have already been identified behind the beneficial effect of these drugs. However, there is still much to be understood regarding the exact pathomechanisms. This review provides an overview of the current literature and sheds light on the modes of action of novel antidiabetic drugs, focusing on inflammation, oxidative stress, and fibrosis.


Assuntos
Doenças Cardiovasculares , Diabetes Mellitus Tipo 2 , Inibidores do Transportador 2 de Sódio-Glicose , Humanos , Hipoglicemiantes/efeitos adversos , Diabetes Mellitus Tipo 2/complicações , Diabetes Mellitus Tipo 2/tratamento farmacológico , Inibidores do Transportador 2 de Sódio-Glicose/farmacologia , Inibidores do Transportador 2 de Sódio-Glicose/uso terapêutico , Doenças Cardiovasculares/etiologia , Doenças Cardiovasculares/induzido quimicamente , Inflamação/tratamento farmacológico , Inflamação/induzido quimicamente , Fibrose , Estresse Oxidativo , Receptor do Peptídeo Semelhante ao Glucagon 1/agonistas
2.
J Physiol ; 597(1): 193-209, 2019 01.
Artigo em Inglês | MEDLINE | ID: mdl-30324679

RESUMO

KEY POINTS: Increased activation of the renin-angiotensin-aldosterone system (RAAS) and elevated growth factor production are of crucial importance in the development of renal fibrosis leading to diabetic kidney disease. The aim of this study was to provide evidence for the antifibrotic potential of RAAS inhibitor (RAASi) treatment and to explore the exact mechanism of this protective effect. We found that RAASi ameliorate diabetes-induced renal interstitial fibrosis and decrease profibrotic growth factor production. RAASi prevents fibrosis by acting directly on proximal tubular cells, and inhibits hyperglycaemia-induced growth factor production and thereby fibroblast activation. These results suggest a novel therapeutic indication and potential of RAASi in the treatment of renal fibrosis. ABSTRACT: In diabetic kidney disease (DKD) increased activation of renin-angiotensin-aldosterone system (RAAS) contributes to renal fibrosis. Although RAAS inhibitors (RAASi) are the gold standard therapy in DKD, the mechanism of their antifibrotic effect is not yet clarified. Here we tested the antifibrotic and renoprotective action of RAASi in a rat model of streptozotocin-induced DKD. In vitro studies on proximal tubular cells and renal fibroblasts were also performed to further clarify the signal transduction pathways that are directly altered by hyperglycaemia. After 5 weeks of diabetes, male Wistar rats were treated for two more weeks per os with the RAASi ramipril, losartan, spironolactone or eplerenone. Proximal tubular cells were cultured in normal or high glucose (HG) medium and treated with RAASi. Platelet-derived growth factor (PDGF) or connective tissue growth factor (CTGF/CCN2)-induced renal fibroblasts were also treated with various RAASi. In diabetic rats, reduced renal function and interstitial fibrosis were ameliorated and elevated renal profibrotic factors (TGFß1, PDGF, CTGF/CCN2, MMP2, TIMP1) and alpha-smooth muscle actin (αSMA) levels were decreased by RAASi. HG increased growth factor production of HK-2 cells, which in turn induced activation and αSMA production of fibroblasts. RAASi decreased tubular PDGF and CTGF expression and reduced production of extracellular matrix (ECM) components in fibroblasts. In proximal tubular cells, hyperglycaemia-induced growth factor production increased renal fibroblast transformation, contributing to the development of fibrosis. RAASi, even in non-antihypertensive doses, decreased the production of profibrotic factors and directly prevented fibroblast activation. All these findings suggest a novel therapeutic role for RAASi in the treatment of renal fibrosis.


Assuntos
Diabetes Mellitus Experimental/tratamento farmacológico , Nefropatias Diabéticas/tratamento farmacológico , Sistema Renina-Angiotensina , Bloqueadores do Receptor Tipo 1 de Angiotensina II/farmacologia , Inibidores da Enzima Conversora de Angiotensina/farmacologia , Animais , Linhagem Celular , Fator de Crescimento do Tecido Conjuntivo/genética , Diabetes Mellitus Experimental/complicações , Diabetes Mellitus Experimental/genética , Diabetes Mellitus Experimental/patologia , Nefropatias Diabéticas/etiologia , Nefropatias Diabéticas/genética , Nefropatias Diabéticas/patologia , Células Epiteliais/efeitos dos fármacos , Células Epiteliais/metabolismo , Eplerenona/farmacologia , Fibroblastos/efeitos dos fármacos , Fibroblastos/metabolismo , Fibrose , Humanos , Rim/citologia , Rim/efeitos dos fármacos , Rim/metabolismo , Rim/patologia , Losartan/farmacologia , Masculino , Manitol/farmacologia , Antagonistas de Receptores de Mineralocorticoides/farmacologia , Proteínas Proto-Oncogênicas c-sis/genética , Ramipril/farmacologia , Ratos Wistar , Espironolactona/farmacologia
3.
Transpl Int ; 31(11): 1268-1278, 2018 11.
Artigo em Inglês | MEDLINE | ID: mdl-29908082

RESUMO

We previously showed that female rats are more protected against renal ischaemia/reperfusion (I/R) injury than males, which is partly attributed to their more pronounced heat shock response. We recently described that Sigma-1 receptor (S1R) activation improves postischaemic survival and renal function. 17ß-estradiol activates S1R, thus here we investigated the role of sex-specific S1R activation and heat shock response in severe renal I/R injury. Proximal tubular cells were treated with 17ß-estradiol, which caused direct S1R activation and subsequent induction of heat shock response. Uninephrectomized female, male and ovariectomized female (Ovx) Wistar rats were subjected to 50-min renal ischaemia followed by 2 (T2) and 24 (T24) hours of reperfusion. At T24 renal functional, impairment was less severe and structural damage was less prominent in females versus males or Ovx. Postischaemic increase in S1R, pAkt, HSF-1, HSP72 levels were detected as early as at T2, while pHSP27 was elevated later at T24. Abundance of heat shock proteins was higher in healthy female rats and remained higher at T2 and T24 (female versus male or Ovx; resp.). We propose a S1R-dependent mechanism, which contributes to the relative renoprotection of females after I/R injury by enhancing the heat shock response.


Assuntos
Resposta ao Choque Térmico , Receptores sigma/metabolismo , Traumatismo por Reperfusão/prevenção & controle , Animais , Creatinina/sangue , Estradiol/metabolismo , Feminino , Proteínas de Choque Térmico/metabolismo , Humanos , Rim/metabolismo , Rim/patologia , Masculino , Ratos , Ratos Wistar , Fatores Sexuais , Resultado do Tratamento , Receptor Sigma-1
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA