Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 11 de 11
Filtrar
1.
Proc Natl Acad Sci U S A ; 121(23): e2316734121, 2024 Jun 04.
Artigo em Inglês | MEDLINE | ID: mdl-38805292

RESUMO

The RNA tailing machinery adds nucleotides to the 3'-end of RNA molecules that are implicated in various biochemical functions, including protein synthesis and RNA stability. Here, we report a role for the RNA tailing machinery as enzymatic modifiers of intracellular amyloidogenesis. A targeted RNA interference screen identified Terminal Nucleotidyl-transferase 4b (TENT4b/Papd5) as an essential participant in the amyloidogenic phase transition of nucleoli into solid-like Amyloid bodies. Full-length-and-mRNA sequencing uncovered starRNA, a class of unusually long untemplated RNA molecules synthesized by TENT4b. StarRNA consists of short rRNA fragments linked to long, linear mixed tails that operate as polyanionic stimulators of amyloidogenesis in cells and in vitro. Ribosomal intergenic spacer noncoding RNA (rIGSRNA) recruit TENT4b in intranucleolar foci to coordinate starRNA synthesis driving their amyloidogenic phase transition. The exoribonuclease RNA Exosome degrades starRNA and functions as a general suppressor of cellular amyloidogenesis. We propose that amyloidogenic phase transition is under tight enzymatic control by the RNA tailing and exosome axis.


Assuntos
Amiloide , Transição de Fase , Humanos , Amiloide/metabolismo , Estabilidade de RNA , RNA/metabolismo , RNA/genética , Polirribonucleotídeo Nucleotidiltransferase/metabolismo , Polirribonucleotídeo Nucleotidiltransferase/genética
2.
EMBO Rep ; 23(8): e54558, 2022 08 03.
Artigo em Inglês | MEDLINE | ID: mdl-35856334

RESUMO

Diabetic foot ulcers (DFU) are a serious complication of diabetes mellitus and associated with reduced quality of life and high mortality rate. DFUs are characterized by a deregulated immune response with decreased neutrophils due to loss of the transcription factor, FOXM1. Diabetes primes neutrophils to form neutrophil extracellular traps (NETs), contributing to tissue damage and impaired healing. However, the role of FOXM1 in priming diabetic neutrophils to undergo NET formation remains unknown. Here, we found that FOXM1 regulates reactive oxygen species (ROS) levels in neutrophils and inhibition of FOXM1 results in increased ROS leading to NET formation. Next generation sequencing revealed that TREM1 promoted the recruitment of FOXM1+ neutrophils and reversed effects of diabetes and promoted wound healing in vivo. Moreover, we found that TREM1 expression correlated with clinical healing outcomes of DFUs, indicating TREM1 may serve as a useful biomarker or a potential therapeutic target. Our findings highlight the clinical relevance of TREM1, and indicates FOXM1 pathway as a novel regulator of NET formation during diabetic wound healing, revealing new therapeutic strategies to promote healing in DFUs.


Assuntos
Diabetes Mellitus , Pé Diabético , Armadilhas Extracelulares , Diabetes Mellitus/metabolismo , Pé Diabético/genética , Pé Diabético/metabolismo , Armadilhas Extracelulares/genética , Armadilhas Extracelulares/metabolismo , Proteína Forkhead Box M1/genética , Proteína Forkhead Box M1/metabolismo , Proteína Forkhead Box M1/farmacologia , Humanos , Qualidade de Vida , Espécies Reativas de Oxigênio/metabolismo , Receptor Gatilho 1 Expresso em Células Mieloides/genética , Receptor Gatilho 1 Expresso em Células Mieloides/metabolismo
3.
Proc Natl Acad Sci U S A ; 118(7)2021 02 16.
Artigo em Inglês | MEDLINE | ID: mdl-33568529

RESUMO

Biomolecular condensates concentrate molecules to facilitate basic biochemical processes, including transcription and DNA replication. While liquid-like condensates have been ascribed various functions, solid-like condensates are generally thought of as amorphous sites of protein storage. Here, we show that solid-like amyloid bodies coordinate local nuclear protein synthesis (LNPS) during stress. On stimulus, translationally active ribosomes accumulate along fiber-like assemblies that characterize amyloid bodies. Mass spectrometry analysis identified regulatory ribosomal proteins and translation factors that relocalize from the cytoplasm to amyloid bodies to sustain LNPS. These amyloidogenic compartments are enriched in newly transcribed messenger RNA by Heat Shock Factor 1 (HSF1). Depletion of stress-induced ribosomal intergenic spacer noncoding RNA (rIGSRNA) that constructs amyloid bodies prevents recruitment of the nuclear protein synthesis machinery, abolishes LNPS, and impairs the nuclear HSF1 response. We propose that amyloid bodies support local nuclear translation during stress and that solid-like condensates can facilitate complex biochemical reactions as their liquid counterparts can.


Assuntos
Amiloide/metabolismo , Núcleo Celular/metabolismo , Resposta ao Choque Térmico , Amiloide/genética , Hipóxia Celular , Citoplasma/metabolismo , Fatores de Transcrição de Choque Térmico/metabolismo , Humanos , Células MCF-7 , Biossíntese de Proteínas , RNA Longo não Codificante/genética , RNA Longo não Codificante/metabolismo , Ribossomos/metabolismo
4.
PLoS Genet ; 10(11): e1004757, 2014 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-25375142

RESUMO

The synaptonemal complex (SC) is a conserved protein structure that holds homologous chromosome pairs together throughout much of meiotic prophase I. It is essential for the formation of crossovers, which are required for the proper segregation of chromosomes into gametes. The assembly of the SC is likely to be regulated by post-translational modifications. The CSN/COP9 signalosome has been shown to act in many pathways, mainly via the ubiquitin degradation/proteasome pathway. Here we examine the role of the CSN/COP9 signalosome in SC assembly in the model organism C. elegans. Our work shows that mutants in three subunits of the CSN/COP9 signalosome fail to properly assemble the SC. In these mutants, SC proteins aggregate, leading to a decrease in proper pairing between homologous chromosomes. The reduction in homolog pairing also results in an accumulation of recombination intermediates and defects in repair of meiotic DSBs to form the designated crossovers. The effect of the CSN/COP9 signalosome mutants on synapsis and crossover formation is due to increased neddylation, as reducing neddylation in these mutants can partially suppress their phenotypes. We also find a marked increase in apoptosis in csn mutants that specifically eliminates nuclei with aggregated SC proteins. csn mutants exhibit defects in germline proliferation, and an almost complete pachytene arrest due to an inability to activate the MAPK pathway. The work described here supports a previously unknown role for the CSN/COP9 signalosome in chromosome behavior during meiotic prophase I.


Assuntos
Segregação de Cromossomos/genética , Troca Genética , Prófase Meiótica I/genética , Complexos Multiproteicos/genética , Peptídeo Hidrolases/genética , Complexo Sinaptonêmico/genética , Animais , Complexo do Signalossomo COP9 , Caenorhabditis elegans , Pareamento Cromossômico/genética , Dano ao DNA/genética , Reparo do DNA/genética , Meiose/genética , Quinases de Proteína Quinase Ativadas por Mitógeno/genética , Mutação , Transdução de Sinais
5.
Skin Appendage Disord ; 9(5): 317-324, 2023 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-37900781

RESUMO

The use of low-light laser therapy to treat androgenetic alopecia is a promising modality to restore hair growth. However, the effect of skin color on response to laser therapy for hair growth has not been systematically explored in the literature. The objective of this study is to systematically assess through a comprehensive literature search of the MEDLINE database whether skin type data were collected in clinical trials and analyzed in each study and determine if we can estimate an effect. 10/22 studies have defined inclusion criteria as Fitzpatrick skin types I-IV. No studies mentioned effects on darker skin types, Fitzpatrick skin types V-VI. Only 5/10 studies had statistical data on efficacy depending on Fitzpatrick skin type, with four showing no effect and one showing a significant positive effect with darker skin types having faster rate of hair growth. There are not enough data to conclude whether skin type effects laser-induced hair growth in androgenic alopecia. The studies are severely lacking in sample size. One showed a potential effect. Importantly, there are no data on black or brown skin colors. Development of optimal laser irradiating wparameters through the prediction of personalized absorbance based on skin color measurement is needed.

6.
Artigo em Inglês | MEDLINE | ID: mdl-36123031

RESUMO

Venous leg ulcers, diabetic foot ulcers, and pressure ulcers are complex chronic wounds with multifactorial etiologies that are associated with high patient morbidity and mortality. Despite considerable progress in deciphering the pathologies of chronic wounds using "omics" approaches, considerable gaps in knowledge remain, and current therapies are often not efficacious. We provide a comprehensive overview of current understanding of the molecular mechanisms that impair healing and current knowledge on cell-specific dysregulation including keratinocytes, fibroblasts, immune cells, endothelial cells and their contributions to impaired reepithelialization, inflammation, angiogenesis, and tissue remodeling that characterize chronic wounds. We also provide a rationale for further elucidation of ulcer-specific pathologic processes that can be therapeutically targeted to shift chronic nonhealing to acute healing wounds.


Assuntos
Pé Diabético , Úlcera por Pressão , Humanos , Células Endoteliais , Cicatrização/fisiologia , Fibroblastos , Doença Crônica
7.
Nat Commun ; 11(1): 2677, 2020 05 29.
Artigo em Inglês | MEDLINE | ID: mdl-32472050

RESUMO

Protein expression evolves under greater evolutionary constraint than mRNA levels, and translation efficiency represents a primary determinant of protein levels during stimuli adaptation. This raises the question as to the translatome remodelers that titrate protein output from mRNA populations. Here, we uncover a network of RNA-binding proteins (RBPs) that enhances the translation efficiency of glycolytic proteins in cells responding to oxygen deprivation. A system-wide proteomic survey of translational engagement identifies a family of oxygen-regulated RBPs that functions as a switch of glycolytic intensity. Tandem mass tag-pulse SILAC (TMT-pSILAC) and RNA sequencing reveals that each RBP controls a unique but overlapping portfolio of hypoxic responsive proteins. These RBPs collaborate with the hypoxic protein synthesis apparatus, operating as a translation efficiency checkpoint that integrates upstream mRNA signals to activate anaerobic metabolism. This system allows anoxia-resistant animals and mammalian cells to initiate anaerobic glycolysis and survive hypoxia. We suggest that an oxygen-sensitive RBP cluster controls anaerobic metabolism to confer hypoxia tolerance.


Assuntos
Anaerobiose/fisiologia , Hipóxia Celular/fisiologia , Glicólise/fisiologia , Proteínas de Ligação a RNA/metabolismo , Células 3T3 , Células A549 , Animais , Caenorhabditis elegans/metabolismo , Linhagem Celular Tumoral , Perfilação da Expressão Gênica , Células HCT116 , Humanos , Camundongos , Oxigênio/metabolismo , Células PC-3 , Biossíntese de Proteínas/fisiologia , Processamento de Proteína Pós-Traducional/genética , Proteômica , RNA Mensageiro/genética
8.
G3 (Bethesda) ; 10(1): 387-400, 2020 01 07.
Artigo em Inglês | MEDLINE | ID: mdl-31767636

RESUMO

Akirin, a conserved metazoan protein, functions in muscle development in flies and mice. However, this was only tested in the rodent and fly model systems. Akirin was shown to act with chromatin remodeling complexes in transcription and was established as a downstream target of the NFκB pathway. Here we show a role for Caenorhabditis elegans Akirin/AKIR-1 in the muscle and body length regulation through a different pathway. Akirin localizes to somatic tissues throughout the body of C. elegans, including muscle nuclei. In agreement with its role in other model systems, Akirin loss of function mutants exhibit defects in muscle development in the embryo, as well as defects in movement and maintenance of muscle integrity in the C. elegans adult. We also have determined that Akirin acts downstream of the TGF-ß Sma/Mab signaling pathway in controlling body size. Moreover, we found that the loss of Akirin resulted in an increase in autophagy markers, similar to mutants in the TGF-ß Sma/Mab signaling pathway. In contrast to what is known in rodent and fly models, C. elegans Akirin does not act with the SWI/SNF chromatin-remodeling complex, and is instead involved with the NuRD chromatin remodeling complex in both movement and regulation of body size. Our studies define a novel developmental role (body size) and a new pathway (TGF-ß Sma/Mab) for Akirin function, and confirmed its evolutionarily conserved function in muscle development in a new organism.


Assuntos
Proteínas de Caenorhabditis elegans/metabolismo , Proteínas de Ciclo Celular/metabolismo , Regulação da Expressão Gênica no Desenvolvimento , Músculos/metabolismo , Fator de Crescimento Transformador beta/metabolismo , Animais , Autofagia , Caenorhabditis elegans , Proteínas de Caenorhabditis elegans/genética , Proteínas de Ciclo Celular/genética , Mutação com Perda de Função , Transdução de Sinais , Fatores de Transcrição/metabolismo
9.
Nat Commun ; 11(1): 5755, 2020 11 13.
Artigo em Inglês | MEDLINE | ID: mdl-33188200

RESUMO

Translatome reprogramming is a primary determinant of protein levels during stimuli adaptation. This raises the question: what are the translatome remodelers that reprogram protein output to activate biochemical adaptations. Here, we identify a translational pathway that represses metabolism to safeguard genome integrity. A system-wide MATRIX survey identified the ancient eIF5A as a pH-regulated translation factor that responds to fermentation-induced acidosis. TMT-pulse-SILAC analysis identified several pH-dependent proteins, including the mTORC1 suppressor Tsc2 and the longevity regulator Sirt1. Sirt1 operates as a pH-sensor that deacetylates nuclear eIF5A during anaerobiosis, enabling the cytoplasmic export of eIF5A/Tsc2 mRNA complexes for translational engagement. Tsc2 induction inhibits mTORC1 to suppress cellular metabolism and prevent acidosis-induced DNA damage. Depletion of eIF5A or Tsc2 leads to metabolic re-initiation and proliferation, but at the expense of incurring substantial DNA damage. We suggest that eIF5A operates as a translatome remodeler that suppresses metabolism to shield the genome.


Assuntos
Dano ao DNA , Fatores de Iniciação de Peptídeos/metabolismo , Biossíntese de Proteínas , Proteínas de Ligação a RNA/metabolismo , Acidose/metabolismo , Acidose/patologia , Transporte Ativo do Núcleo Celular , Trifosfato de Adenosina/metabolismo , Hipóxia Celular , Linhagem Celular Tumoral , Núcleo Celular/metabolismo , Proliferação de Células , Humanos , Alvo Mecanístico do Complexo 1 de Rapamicina/antagonistas & inibidores , Alvo Mecanístico do Complexo 1 de Rapamicina/metabolismo , Fatores de Iniciação de Peptídeos/genética , Proteômica , RNA Mensageiro/metabolismo , Proteínas de Ligação a RNA/genética , Sirtuína 1/antagonistas & inibidores , Sirtuína 1/metabolismo , Transcrição Gênica , Proteína 2 do Complexo Esclerose Tuberosa/genética , Proteína 2 do Complexo Esclerose Tuberosa/metabolismo , Fator de Iniciação de Tradução Eucariótico 5A
10.
Cell Rep ; 22(1): 17-26, 2018 01 02.
Artigo em Inglês | MEDLINE | ID: mdl-29298419

RESUMO

The eukaryotic translation initiation factor 5B (eIF5B) is a homolog of IF2, an ancient translation factor that enables initiator methionine-tRNAiMet (met-tRNAiMet) loading on prokaryotic ribosomes. While it can be traced back to the last universal common ancestor, eIF5B is curiously dispensable in modern aerobic yeast and mammalian cells. Here, we show that eIF5B is an essential element of the cellular hypoxic cap-dependent protein synthesis machinery. System-wide interrogation of dynamic translation machineries by MATRIX (mass spectrometry analysis of active translation factors using ribosome density fractionation and isotopic labeling experiments) demonstrated augmented eIF5B activity in hypoxic translating ribosomes. Global translatome studies revealed central carbon metabolism, cellular hypoxic adaptation, and ATF4-mediated stress response as major eIF5B-dependent pathways. These primordial processes rely on eIF5B even in the presence of oxygen and active eIF2, the canonical recruiter of met-tRNAiMet in eukaryotes. We suggest that aerobic eukarya retained eIF5B/IF2 to remodel anaerobic pathways during episodes of oxygen deficiency.


Assuntos
Carbono/metabolismo , Fatores de Iniciação em Eucariotos/metabolismo , Oxigênio/metabolismo , Biossíntese de Proteínas , Células A549 , Fator 4 Ativador da Transcrição/metabolismo , Aerobiose , Hipóxia Celular , Fator de Iniciação 2 em Eucariotos/metabolismo , Humanos , Células MCF-7
11.
J Cell Biol ; 216(2): 393-408, 2017 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-28077446

RESUMO

In meiotic prophase I, homologous chromosome pairing is promoted through chromosome movement mediated by nuclear envelope proteins, microtubules, and dynein. After proper homologue pairing has been established, the synaptonemal complex (SC) assembles along the paired homologues, stabilizing their interaction and allowing for crossing over to occur. Previous studies have shown that perturbing chromosome movement leads to pairing defects and SC polycomplex formation. We show that FKB-6 plays a role in SC assembly and is required for timely pairing and proper double-strand break repair kinetics. FKB-6 localizes outside the nucleus, and in its absence, the microtubule network is altered. FKB-6 is required for proper movement of dynein, increasing resting time between movements. Attenuating chromosomal movement in fkb-6 mutants partially restores the defects in synapsis, in agreement with FKB-6 acting by decreasing chromosomal movement. Therefore, we suggest that FKB-6 plays a role in regulating dynein movement by preventing excess chromosome movement, which is essential for proper SC assembly and homologous chromosome pairing.


Assuntos
Proteínas de Caenorhabditis elegans/metabolismo , Caenorhabditis elegans/enzimologia , Pareamento Cromossômico , Posicionamento Cromossômico , Imunofilinas/metabolismo , Chaperonas Moleculares/metabolismo , Complexo Sinaptonêmico/metabolismo , Animais , Animais Geneticamente Modificados , Caenorhabditis elegans/genética , Caenorhabditis elegans/crescimento & desenvolvimento , Proteínas de Caenorhabditis elegans/genética , Dineínas do Citoplasma/genética , Dineínas do Citoplasma/metabolismo , Dineínas/genética , Dineínas/metabolismo , Genótipo , Imunofilinas/genética , Hibridização in Situ Fluorescente , Microscopia de Fluorescência , Chaperonas Moleculares/genética , Mutação , Fenótipo , Interferência de RNA , Transdução de Sinais , Complexo Sinaptonêmico/genética , Fatores de Tempo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA