Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 39
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Development ; 150(13)2023 07 01.
Artigo em Inglês | MEDLINE | ID: mdl-37272420

RESUMO

The vertebrate appendage comprises three primary segments, the stylopod, zeugopod and autopod, each separated by joints. The molecular mechanisms governing the specification of joint sites, which define segment lengths and thereby limb architecture, remain largely unknown. Existing literature suggests that reciprocal gradients of retinoic acid (RA) and fibroblast growth factor (FGF) signaling define the expression domains of the putative segment markers Meis1, Hoxa11 and Hoxa13. Barx1 is expressed in the presumptive joint sites. Our data demonstrate that RA-FGF signaling gradients define the expression domain of Barx1 in the first presumptive joint site. When misexpressed, Barx1 induces ectopic interzone-like structures, and its loss of function partially blocks interzone development. Simultaneous perturbations of RA-FGF signaling gradients result in predictable shifts of Barx1 expression domains along the proximo-distal axis and, consequently, in the formation of repositioned joints. Our data suggest that during early limb bud development in chick, Meis1 and Hoxa11 expression domains are overlapping, whereas the Barx1 expression domain resides within the Hoxa11 expression domain. However, once the interzone is formed, the expression domains are refined and the Barx1 expression domain becomes congruent with the border of these two putative segment markers.


Assuntos
Articulações , Fatores de Transcrição , Animais , Fatores de Transcrição/genética , Fatores de Transcrição/metabolismo , Articulações/metabolismo , Proteína Meis1/genética , Proteína Meis1/metabolismo , Vertebrados/genética , Vertebrados/metabolismo , Extremidades , Regulação da Expressão Gênica no Desenvolvimento
2.
Phytochem Anal ; 2024 May 27.
Artigo em Inglês | MEDLINE | ID: mdl-38802067

RESUMO

INTRODUCTION: Ginger (Zingiber officinale Rosc.) varies widely due to varying concentrations of phytochemicals and geographical origin. Rapid non-invasive quality and traceability assessment techniques ensure a sustainable value chain. OBJECTIVE: The objective of this study is the development of suitable machine learning models to estimate the concentration of 6-gingerol and check traceability based on the spectral fingerprints of dried ginger samples collected from Northeast India and the Indian market using near-infrared spectrometry. METHODS: Samples from the market and Northeast India underwent High Performance Liquid Chromatographic analysis for 6-gingerol content estimation. Near infrared (NIR) Spectrometer acquired spectral data. Quality prediction utilized partial least square regression (PLSR), while fingerprint-based traceability identification employed principal component analysis and t-distributed stochastic neighbor embedding (t-SNE). Model performance was assessed using RMSE and R2 values across selective wavelengths and spectral fingerprints. RESULTS: The standard normal variate pretreated spectral data over the wavelength region of 1,100-1,250 nm and 1,325-1,550 nm showed the optimal calibration model with root mean square error of calibration and R2 C (coefficient of determination for calibration) values of 0.87 and 0.897 respectively. A lower value (0.24) of root mean square error of prediction and a higher value (0.973) of R2 P (coefficient of determination for prediction) indicated the effectiveness of the developed model. t-SNE performed better clustering of samples based on geographical location, which was independent of gingerol content. CONCLUSION: The developed NIR spectroscopic model for Indian ginger samples predicts the 6-gingerol content and provides geographical traceability-based identification to ensure a sustainable value chain, which can promote efficiency, cost-effectiveness, consumer confidence, sustainable sourcing, traceability, and data-driven decision-making.

3.
Osteoarthritis Cartilage ; 31(11): 1454-1468, 2023 11.
Artigo em Inglês | MEDLINE | ID: mdl-37392862

RESUMO

OBJECTIVE: To explore the significance of BMP signaling in osteoarthritis (OA) etiology, and thereafter propose a disease-modifying therapy for OA. METHODS: To examine the role of the BMP signaling in pathogenesis of OA, an Anterior Cruciate Ligament Transection (ACLT) surgery was performed to incite OA in C57BL/6J mouse line at postnatal day 120 (P120). Thereafter, to investigate whether activation of BMP signaling is necessary and sufficient to induce OA, we have used conditional gain- and loss-of-function mouse lines in which BMP signaling can be activated or depleted, respectively, upon intraperitoneal injection of tamoxifen. Finally, we locally inhibited BMP signaling through intra-articular injection of LDN-193189 pre- and post-onset surgically induced OA. The majority of the investigation has been conducted using micro-CT, histological staining, and immuno histochemistry to assess the disease etiology. RESULTS: Upon induction of OA, depletion of SMURF1-an intra-cellular BMP signaling inhibitor in articular cartilage coincided with the activation of BMP signaling, as measured by pSMAD1/5/9 expression. In mouse articular cartilage, the BMP gain-of-function mutation is sufficient to induce OA even without surgery. Further, genetic, or pharmacological BMP signaling suppression also prevented pathogenesis of OA. Interestingly, inflammatory indicators were also significantly reduced upon LDN-193189 intra-articular injection which inhibited BMP signaling and slowed OA progression post onset. CONCLUSION: Our findings showed that BMP signaling is crucial to the etiology of OA and inhibiting BMP signaling locally can be a potent strategy for alleviating OA.


Assuntos
Cartilagem Articular , Osteoartrite do Joelho , Camundongos , Animais , Osteoartrite do Joelho/patologia , Modelos Animais de Doenças , Camundongos Endogâmicos C57BL , Ligamento Cruzado Anterior/cirurgia , Ligamento Cruzado Anterior/metabolismo , Cartilagem Articular/patologia
4.
Phytochem Anal ; 33(2): 204-213, 2022 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-34342083

RESUMO

INTRODUCTION: The major chemical marker of black pepper (Piper nigrum L) is piperine and its estimation is extremely important for quality assessment of black pepper. The methods for piperine quantification, to date, are laboratory based and use high end instruments like chromatographs, which require tedious sample processing and cause sample destruction. OBJECTIVES: In this article, we present a simple, rapid and green analytical method based on Raman spectroscopy for the quantitative assessment of piperine. MATERIAL AND METHODS: To assess the potential of the technique, we report the complete vibrational characterisation of the piperine with density functional theory (DFT) calculations. RESULTS: The theoretical peaks were obtained at 1097 cm-1 , 1388 cm-1 , 1528 cm-1 , 1578 cm-1 , and at 1627 cm-1 , and this result was verified in a Raman spectrometer followed by a preliminary experiment. Twenty black pepper samples were analysed using high-performance liquid chromatography (HPLC) and used as reference data for Raman analysis. The Raman shift spectra were analysed using partial least squares (PLS) and good prediction accuracy with correlation coefficient of prediction (Rp2 ) = 0.93, root mean square error of prediction (RMSEP) = 0.13 and residual prediction deviation (RPD) = 3.9 obtained. CONCLUSIONS: The results demonstrate the efficacy of the Raman technique for the estimation of piperine in the dry fruit of Piper nigrum.


Assuntos
Piper nigrum , Alcaloides , Benzodioxóis/química , Piper nigrum/química , Piperidinas , Alcamidas Poli-Insaturadas/química , Análise Espectral Raman/métodos
5.
Development ; 145(2)2018 01 17.
Artigo em Inglês | MEDLINE | ID: mdl-29247144

RESUMO

During appendicular skeletal development, the bi-potential cartilage anlagen gives rise to transient cartilage, which is eventually replaced by bone, and to articular cartilage that caps the ends of individual skeletal elements. While the molecular mechanism that regulates transient cartilage differentiation is relatively well understood, the mechanism of articular cartilage differentiation has only begun to be unraveled. Furthermore, the molecules that coordinate the articular and transient cartilage differentiation processes are poorly understood. Here, we have characterized in chick the regulatory roles of two transcription factors, NFIA and GATA3, in articular cartilage differentiation, maintenance and the coordinated differentiation of articular and transient cartilage. Both NFIA and GATA3 block hypertrophic differentiation. Our results suggest that NFIA is not sufficient but necessary for articular cartilage differentiation. Ectopic activation of GATA3 promotes articular cartilage differentiation, whereas inhibition of GATA3 activity promotes transient cartilage differentiation at the expense of articular cartilage. We propose a novel transcriptional circuitry involved in embryonic articular cartilage differentiation, maintenance and its crosstalk with the transient cartilage differentiation program.


Assuntos
Proteínas Aviárias/metabolismo , Cartilagem Articular/embriologia , Cartilagem Articular/metabolismo , Fator de Transcrição GATA3/metabolismo , Fatores de Transcrição NFI/metabolismo , Animais , Animais Geneticamente Modificados , Proteínas Aviárias/deficiência , Proteínas Aviárias/genética , Diferenciação Celular/genética , Diferenciação Celular/fisiologia , Embrião de Galinha , Condrócitos/citologia , Condrócitos/metabolismo , Feminino , Fator de Transcrição GATA3/genética , Técnicas de Silenciamento de Genes , Masculino , Camundongos , Camundongos Knockout , Modelos Biológicos , Fatores de Transcrição NFI/deficiência , Fatores de Transcrição NFI/genética , Gravidez , RNA Interferente Pequeno/genética , Proteínas Recombinantes/genética , Proteínas Recombinantes/metabolismo
6.
Development ; 145(5)2018 03 12.
Artigo em Inglês | MEDLINE | ID: mdl-29467244

RESUMO

Dynamic mechanical loading of synovial joints is necessary for normal joint development, as evidenced in certain clinical conditions, congenital disorders and animal models where dynamic muscle contractions are reduced or absent. Although the importance of mechanical forces on joint development is unequivocal, little is known about the molecular mechanisms involved. Here, using chick and mouse embryos, we observed that molecular changes in expression of multiple genes analyzed in the absence of mechanical stimulation are consistent across species. Our results suggest that abnormal joint development in immobilized embryos involves inappropriate regulation of Wnt and BMP signaling during definition of the emerging joint territories, i.e. reduced ß-catenin activation and concomitant upregulation of pSMAD1/5/8 signaling. Moreover, dynamic mechanical loading of the developing knee joint activates Smurf1 expression; our data suggest that Smurf1 insulates the joint region from pSMAD1/5/8 signaling and is essential for maintenance of joint progenitor cell fate.


Assuntos
Padronização Corporal , Proteínas Morfogenéticas Ósseas/metabolismo , Articulações/embriologia , Articulações/metabolismo , Movimento/fisiologia , Animais , Padronização Corporal/genética , Proteínas Morfogenéticas Ósseas/genética , Cartilagem Articular/embriologia , Cartilagem Articular/metabolismo , Diferenciação Celular/genética , Embrião de Galinha , Embrião de Mamíferos , Regulação da Expressão Gênica no Desenvolvimento , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Transgênicos , Transdução de Sinais/genética , beta Catenina/genética , beta Catenina/metabolismo
7.
Development ; 142(6): 1169-79, 2015 Mar 15.
Artigo em Inglês | MEDLINE | ID: mdl-25758226

RESUMO

The articular cartilage, which lines the joints of the limb skeleton, is distinct from the adjoining transient cartilage, and yet, it differentiates as a unique population within a contiguous cartilage element. Current literature suggests that articular cartilage and transient cartilage originate from different cell populations. Using a combination of lineage tracing and pulse-chase of actively proliferating chondrocytes, we here demonstrate that, similar to transient cartilage, embryonic articular cartilage cells also originate from the proliferating chondrocytes situated near the distal ends of skeletal anlagen. We show that nascent cartilage cells are capable of differentiating as articular or transient cartilage, depending on exposure to Wnt or BMP signaling, respectively. The spatial organization of the articular cartilage results from a band of Nog-expressing cells, which insulates these proliferating chondrocytes from BMP signaling and allows them to differentiate as articular cartilage under the influence of Wnt signaling emanating from the interzone. Through experiments conducted in both chick and mouse embryos we have developed a model explaining simultaneous growth and differentiation of transient and articular cartilage in juxtaposed domains.


Assuntos
Proteínas Morfogenéticas Ósseas/metabolismo , Proteínas de Transporte/metabolismo , Cartilagem Articular/embriologia , Linhagem da Célula/fisiologia , Transdução de Sinais/fisiologia , Azul Alciano , Animais , Cartilagem Articular/citologia , Diferenciação Celular/fisiologia , Proliferação de Células/fisiologia , Embrião de Galinha , Condrócitos/metabolismo , Condrócitos/fisiologia , Imuno-Histoquímica , Hibridização In Situ , Camundongos , Camundongos Transgênicos , Proteínas Wnt/metabolismo
10.
Dev Biol ; 389(2): 192-207, 2014 May 15.
Artigo em Inglês | MEDLINE | ID: mdl-24583261

RESUMO

In vertebrates, BMP signaling has been demonstrated to be sufficient for bone formation in several tissue contexts. This suggests that genes necessary for bone formation are expressed in a BMP signaling dependent manner. However, till date no gene has been reported to be expressed in a BMP signaling dependent manner in bone. Our aim was to identify such genes. On searching the literature we found that several microarray experiments have been conducted where the transcriptome of osteogenic cells in absence and presence of BMP signaling activation have been compared. However, till date, there is no evidence to suggest that any of the genes found to be upregulated in presence of BMP signaling in these microarray analyses is indeed a target of BMP signaling in bone. We wanted to utilize this publicly available information to identify candidate BMP signaling target genes in vivo. We performed a meta-analysis of six such comparable microarray datasets. This analysis and subsequent experiments led to the identification of five targets of BMP signaling in bone that are conserved both in mouse and chick. Of these Lox, Klf10 and Gpr97 are likely to be direct transcriptional targets of BMP signaling pathway. Dpysl3, is a novel BMP signaling target identified in our study. Our data demonstrate that Dpysl3 is important for osteogenic differentiation of mesenchymal cells and is involved in cell secretion. We have demonstrated that the expression of Dpysl3 is co-operatively regulated by BMP signaling and Runx2. Based on our experimental data, in silico analysis of the putative promoter-enhancer regions of Bmp target genes and existing literature, we hypothesize that BMP signaling collaborates with multiple signaling pathways to regulate the expression of a unique set of genes involved in endochondral ossification.


Assuntos
Desenvolvimento Ósseo/genética , Proteínas Morfogenéticas Ósseas/metabolismo , Osso e Ossos/metabolismo , Sequência Conservada , Evolução Molecular , Análise de Sequência com Séries de Oligonucleotídeos , Transdução de Sinais/efeitos dos fármacos , Animais , Sequência de Bases , Osso e Ossos/citologia , Diferenciação Celular/genética , Embrião de Galinha , Simulação por Computador , Bases de Dados Genéticas , Regulação da Expressão Gênica no Desenvolvimento , Inativação Gênica , Células-Tronco Mesenquimais/citologia , Células-Tronco Mesenquimais/metabolismo , Camundongos , Modelos Genéticos , Dados de Sequência Molecular , Proteínas do Tecido Nervoso/genética , Proteínas do Tecido Nervoso/metabolismo , Osteogênese/genética , Transdução de Sinais/genética , Transcrição Gênica
11.
Nat Genet ; 38(12): 1424-9, 2006 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-17099713

RESUMO

Adult bones have a notable regenerative capacity. Over 40 years ago, an intrinsic activity capable of initiating this reparative response was found to reside within bone itself, and the term bone morphogenetic protein (BMP) was coined to describe the molecules responsible for it. A family of BMP proteins was subsequently identified, but no individual BMP has been shown to be the initiator of the endogenous bone repair response. Here we demonstrate that BMP2 is a necessary component of the signaling cascade that governs fracture repair. Mice lacking the ability to produce BMP2 in their limb bones have spontaneous fractures that do not resolve with time. In fact, in bones lacking BMP2, the earliest steps of fracture healing seem to be blocked. Although other osteogenic stimuli are still present in the limb skeleton of BMP2-deficient mice, they cannot compensate for the absence of BMP2. Collectively, our results identify BMP2 as an endogenous mediator necessary for fracture repair.


Assuntos
Desenvolvimento Ósseo/fisiologia , Proteínas Morfogenéticas Ósseas/fisiologia , Consolidação da Fratura/fisiologia , Fator de Crescimento Transformador beta/fisiologia , Animais , Desenvolvimento Ósseo/genética , Proteína Morfogenética Óssea 2 , Proteínas Morfogenéticas Ósseas/deficiência , Proteínas Morfogenéticas Ósseas/genética , Osso e Ossos/metabolismo , Osso e Ossos/patologia , Consolidação da Fratura/genética , Hibridização In Situ , Camundongos , Camundongos Knockout , Osteogênese , RNA Mensageiro/genética , RNA Mensageiro/metabolismo , Reação em Cadeia da Polimerase Via Transcriptase Reversa , Transdução de Sinais , Fator de Crescimento Transformador beta/deficiência , Fator de Crescimento Transformador beta/genética
12.
Biomed Mater ; 19(2)2024 Jan 19.
Artigo em Inglês | MEDLINE | ID: mdl-38198731

RESUMO

The molecular niche of an osteoarthritic microenvironment comprises the native chondrocytes, the circulatory immune cells, and their respective inflammatory mediators. Although M2 macrophages infiltrate the joint tissue during osteoarthritis (OA) to initiate cartilage repair, the mechanistic crosstalk that dwells underneath is still unknown. Our study established a co-culture system of human OA chondrocytes and M2 macrophages in 3D spheroids and 3D bioprinted silk-gelatin constructs. It is already well established that Silk fibroin-gelatin bioink supports chondrogenic differentiation due to upregulation of the Wnt/ß-catenin pathway. Additionally, the presence of anti-inflammatory M2 macrophages significantly upregulated the expression of chondrogenic biomarkers (COL-II, ACAN) with an attenuated expression of the chondrocyte hypertrophy (COL-X), chondrocyte dedifferentiation (COL-I) and matrix catabolism (MMP-1 and MMP-13) genes even in the absence of the interleukins. Furthermore, the 3D bioprinted co-culture model displayed an upper hand in stimulating cartilage regeneration and OA inhibition than the spheroid model, underlining the role of silk fibroin-gelatin in encouraging chondrogenesis. Additionally, the 3D bioprinted silk-gelatin constructs further supported the maintenance of stable anti-inflammatory phenotype of M2 macrophage. Thus, the direct interaction between the primary OAC and M2 macrophages in the 3D context, along with the release of the soluble anti-inflammatory factors by the M2 cells, significantly contributed to a better understanding of the molecular mechanisms responsible for immune cell-mediated OA healing.


Assuntos
Bioimpressão , Fibroínas , Osteoartrite , Humanos , Condrócitos , Gelatina , Macrófagos/metabolismo , Anti-Inflamatórios
13.
Nat Cell Biol ; 7(7): 698-705, 2005 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-15965468

RESUMO

WSB-1 is a SOCS-box-containing WD-40 protein of unknown function that is induced by Hedgehog signalling in embryonic structures during chicken development. Here we show that WSB-1 is part of an E3 ubiquitin ligase for the thyroid-hormone-activating type 2 iodothyronine deiodinase (D2). The WD-40 propeller of WSB-1 recognizes an 18-amino-acid loop in D2 that confers metabolic instability, whereas the SOCS-box domain mediates its interaction with a ubiquitinating catalytic core complex, modelled as Elongin BC-Cul5-Rbx1 (ECS(WSB-1)). In the developing tibial growth plate, Hedgehog-stimulated D2 ubiquitination via ECS(WSB-1) induces parathyroid hormone-related peptide (PTHrP), thereby regulating chondrocyte differentiation. Thus, ECS(WSB-1) mediates a mechanism by which 'systemic' thyroid hormone can effect local control of the Hedgehog-PTHrP negative feedback loop and thus skeletogenesis.


Assuntos
Lâmina de Crescimento/metabolismo , Proteína Relacionada ao Hormônio Paratireóideo/metabolismo , Proteínas/fisiologia , Hormônios Tireóideos/metabolismo , Transativadores/fisiologia , Ubiquitina-Proteína Ligases/fisiologia , Sequência de Aminoácidos , Animais , Sítios de Ligação/genética , Diferenciação Celular/efeitos dos fármacos , Diferenciação Celular/fisiologia , Embrião de Galinha , Condrócitos/efeitos dos fármacos , Condrócitos/metabolismo , Elonguina , Expressão Gênica/efeitos dos fármacos , Expressão Gênica/genética , Lâmina de Crescimento/embriologia , Proteínas Hedgehog , Humanos , Imunoprecipitação , Hibridização In Situ , Peptídeos e Proteínas de Sinalização Intracelular , Iodeto Peroxidase/genética , Iodeto Peroxidase/metabolismo , Camundongos , Modelos Biológicos , Modelos Moleculares , Dados de Sequência Molecular , Mutação , Ligação Proteica , Subunidades Proteicas/genética , Subunidades Proteicas/metabolismo , Subunidades Proteicas/fisiologia , Proteínas/genética , Proteínas/metabolismo , Interferência de RNA , Homologia de Sequência de Aminoácidos , Hormônios Tireóideos/farmacologia , Tíbia/citologia , Tíbia/efeitos dos fármacos , Tíbia/metabolismo , Transativadores/genética , Transativadores/farmacologia , Fatores de Transcrição/metabolismo , Transfecção , Técnicas do Sistema de Duplo-Híbrido , Ubiquitina/metabolismo , Ubiquitina-Proteína Ligases/genética , Ubiquitina-Proteína Ligases/metabolismo , Proteínas Contendo Repetições de beta-Transducina/genética , Iodotironina Desiodinase Tipo II
14.
Cells ; 11(24)2022 12 13.
Artigo em Inglês | MEDLINE | ID: mdl-36552796

RESUMO

Articular cartilage shows limited self-healing ability owing to its low cellularity and avascularity. Untreated cartilage defects display an increased propensity to degenerate, leading to osteoarthritis (OA). During OA progression, articular chondrocytes are subjected to significant alterations in gene expression and phenotype, including a shift towards a hypertrophic-like state (with the expression of collagen type X, matrix metalloproteinases-13, and alkaline phosphatase) analogous to what eventuates during endochondral ossification. Present OA management strategies focus, however, exclusively on cartilage inflammation and degradation. A better understanding of the hypertrophic chondrocyte phenotype in OA might give new insights into its pathogenesis, suggesting potential disease-modifying therapeutic approaches. Recent developments in the field of cellular/molecular biology and tissue engineering proceeded in the direction of contrasting the onset of this hypertrophic phenotype, but knowledge gaps in the cause-effect of these processes are still present. In this review we will highlight the possible advantages and drawbacks of using this approach as a therapeutic strategy while focusing on the experimental models necessary for a better understanding of the phenomenon. Specifically, we will discuss in brief the cellular signaling pathways associated with the onset of a hypertrophic phenotype in chondrocytes during the progression of OA and will analyze in depth the advantages and disadvantages of various models that have been used to mimic it. Afterwards, we will present the strategies developed and proposed to impede chondrocyte hypertrophy and cartilage matrix mineralization/calcification. Finally, we will examine the future perspectives of OA therapeutic strategies.


Assuntos
Cartilagem Articular , Osteoartrite , Humanos , Condrócitos/metabolismo , Osteoartrite/metabolismo , Hipertrofia/metabolismo , Cartilagem Articular/metabolismo , Diferenciação Celular
15.
Front Pharmacol ; 12: 629833, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34025404

RESUMO

Andrographis paniculata (Burm. F) Nees, has been widely used for upper respiratory tract and several other diseases and general immunity for a historically long time in countries like India, China, Thailand, Japan, and Malaysia. The vegetative productivity and quality with respect to pharmaceutical properties of Andrographis paniculata varies considerably across production, ecologies, and genotypes. Thus, a field deployable instrument, which can quickly assess the quality of the plant material with minimal processing, would be of great use to the medicinal plant industry by reducing waste, and quality grading and assurance. In this paper, the potential of near infrared reflectance spectroscopy (NIR) was to estimate the major group active molecules, the andrographolides in Andrographis paniculata, from dried leaf samples and leaf methanol extracts and grade the plant samples from different sources. The calibration model was developed first on the NIR spectra obtained from the methanol extracts of the samples as a proof of concept and then the raw ground samples were estimated for gradation. To grade the samples into three classes: good, medium and poor, a model based on a machine learning algorithm - support vector machine (SVM) on NIR spectra was built. The tenfold classification results of the model had an accuracy of 83% using standard normal variate (SNV) preprocessing.

16.
ACS Appl Mater Interfaces ; 13(15): 17300-17315, 2021 Apr 21.
Artigo em Inglês | MEDLINE | ID: mdl-33830736

RESUMO

A technology for systemic and repeated administration of osteogenic factors for orthopedic use is an unmet medical need. Lactoferrin (∼80 kDa), present in milk, is known to support bone growth. We discovered a lactoferrin-mimetic peptide, LP2 (an 18-residue fragment from the N-terminus of the N-lobe of human lactoferrin), which self-assembles into a nano-globular assembly with a ß-sheet structure in an aqueous environment. LP2 is non-hemolytic and non-cytotoxic against human red blood cells and 3T3 fibroblasts, respectively, and appreciably stable in the human serum. LP2 through the bone morphogenetic protein-dependent mechanism stimulates osteoblast differentiation more potently than the full-length protein as well as the osteoblastic production of osteoprotegerin (an anti-osteoclastogenic factor). Consequently, daily subcutaneous administration of LP2 to rats and rabbits with osteotomy resulted in faster bone healing and stimulated bone formation in rats with a low bone mass more potently than that with teriparatide, the standard-of-care osteogenic peptide for osteoporosis. LP2 has skeletal bioavailability and is safe at the 15× osteogenic dose. Thus, LP2 is a novel peptide that can be administered systemically for the medical management of hard-to-heal fractures.


Assuntos
Regeneração Óssea/efeitos dos fármacos , Lactoferrina/química , Nanoestruturas/química , Procedimentos Ortopédicos , Fragmentos de Peptídeos/química , Fragmentos de Peptídeos/farmacologia , Células 3T3 , Animais , Disponibilidade Biológica , Diferenciação Celular/efeitos dos fármacos , Estabilidade de Medicamentos , Humanos , Camundongos , Osteoblastos/citologia , Osteoblastos/efeitos dos fármacos , Fragmentos de Peptídeos/efeitos adversos , Fragmentos de Peptídeos/farmacocinética , Segurança
17.
Int J Dev Biol ; 64(1-2-3): 203-211, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-32659009

RESUMO

Limb skeleton forms through the process of endochondral ossification. This process of osteogenesis proceeds through an intermediate cartilage template and involves several stages of chondrocyte maturation and eventual bone formation. During the process of endochondral ossification, interplay between BMP and WNT signaling regulate simultaneous differentiation of articular and transient cartilage. In this review, we focus on the recent literature which explores the simultaneous differentiation of these two different types of cartilage. We discuss a new paradigm of developmental biology-inspired tissue engineering of bone and cartilage grafts and provide novel insight into treatment of osteoporosis.


Assuntos
Proteínas Morfogenéticas Ósseas/metabolismo , Cartilagem Articular/citologia , Diferenciação Celular , Condrogênese , Osteogênese , Osteoporose/terapia , Proteínas Wnt/metabolismo , Animais , Proteínas Morfogenéticas Ósseas/genética , Osso e Ossos/citologia , Osso e Ossos/metabolismo , Cartilagem Articular/metabolismo , Humanos , Osteoporose/genética , Osteoporose/metabolismo , Engenharia Tecidual , Proteínas Wnt/genética
18.
Dev Biol ; 321(1): 162-74, 2008 Sep 01.
Artigo em Inglês | MEDLINE | ID: mdl-18602913

RESUMO

Developing cartilaginous and ossified skeletal anlagen is encapsulated within a membranous sheath of flattened, elongated cells called, respectively, the perichondrium and the periosteum. These periskeletal tissues are organized in distinct morphological layers that have been proposed to support distinct functions. Classical experiments, particularly those using an in vitro organ culture system, demonstrated that these tissues play important roles in regulating the differentiation of the subjacent skeletal elements. However, there has been a lack of molecular markers that would allow analysis of these interactions. To understand the molecular bases for the roles played by the periskeletal tissues, we generated microarrays from perichondrium and periosteum cDNA libraries and used them to compare the gene expression profiles of these two tissues. In situ hybridization analysis of genes identified on the microarrays revealed many unique markers for these tissues and demonstrated that the histologically distinct layers of the perichondrium and periosteum are associated with distinct molecular expression domains. Moreover our marker analysis identified new domains that had not been previously recognized as distinct within these tissues as well as a previously uncharacterized molecular domain along the lateral edges of the adjacent developing cartilage that experimental analysis showed to be dependent upon the perichondrium.


Assuntos
Osso e Ossos/embriologia , Condrócitos/metabolismo , Regulação da Expressão Gênica no Desenvolvimento , Animais , Embrião de Galinha , Análise de Sequência com Séries de Oligonucleotídeos , Osteogênese
19.
PLoS Genet ; 2(12): e216, 2006 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-17194222

RESUMO

Bone morphogenetic protein (BMP) family members, including BMP2, BMP4, and BMP7, are expressed throughout limb development. BMPs have been implicated in early limb patterning as well as in the process of skeletogenesis. However, due to complications associated with early embryonic lethality, particularly for Bmp2 and Bmp4, and with functional redundancy among BMP molecules, it has been difficult to decipher the specific roles of these BMP molecules during different stages of limb development. To circumvent these issues, we have constructed a series of mouse strains lacking one or more of these BMPs, using conditional alleles in the case of Bmp2 and Bmp4 to remove them specifically from the limb bud mesenchyme. Contrary to earlier suggestions, our results indicate that BMPs neither act as secondary signals downstream of Sonic Hedghog (SHH) in patterning the anteroposterior axis nor as signals from the interdigital mesenchyme in specifying digit identity. We do find that a threshold level of BMP signaling is required for the onset of chondrogenesis, and hence some chondrogenic condensations fail to form in limbs deficient in both BMP2 and BMP4. However, in the condensations that do form, subsequent chondrogenic differentiation proceeds normally even in the absence of BMP2 and BMP7 or BMP2 and BMP4. In contrast, we find that the loss of both BMP2 and BMP4 results in a severe impairment of osteogenesis.


Assuntos
Padronização Corporal/genética , Proteínas Morfogenéticas Ósseas/genética , Extremidades/embriologia , Osteogênese/genética , Fator de Crescimento Transformador beta/genética , Animais , Padronização Corporal/fisiologia , Proteína Morfogenética Óssea 2 , Proteína Morfogenética Óssea 4 , Proteína Morfogenética Óssea 7 , Proteínas Morfogenéticas Ósseas/deficiência , Proteínas Morfogenéticas Ósseas/fisiologia , Condrogênese/genética , Regulação para Baixo/genética , Extremidades/crescimento & desenvolvimento , Feminino , Proteínas de Homeodomínio/genética , Deformidades Congênitas dos Membros/genética , Deformidades Congênitas dos Membros/fisiopatologia , Masculino , Camundongos , Camundongos Knockout , Camundongos Transgênicos , Transdução de Sinais/genética , Fator de Crescimento Transformador beta/deficiência , Fator de Crescimento Transformador beta/fisiologia
20.
Biochem Pharmacol ; 165: 17-23, 2019 07.
Artigo em Inglês | MEDLINE | ID: mdl-30922620

RESUMO

Osteoarthritis is the most prevalent musculoskeletal disorder and one for which there is no disease modifying therapy available at present. Our current understanding of the disease mechanism of osteoarthritis is limited owing to a lacuna of knowledge about the development and maintenance of articular cartilage that is affected during osteoarthritis. All current therapeutic strategies aim at countering inflammation which though mitigates pain but does not arrest the progressive degeneration of articular cartilage. During osteoarthritis, articular cartilage expresses markers for transient cartilage differentiation. Moreover, blocking transient cartilage differentiation is sufficient for halting the progression of experimental osteoarthritis. A developmental biology inspired approach that combines restoration of tissue microenvironment, supplementation with engineered cartilage and built in mechanism to prevent transient cartilage differentiation could be an avenue for developing a disease modifying therapy for osteoarthritis.


Assuntos
Osteoartrite/tratamento farmacológico , Animais , Cartilagem Articular/citologia , Diferenciação Celular , Humanos , Osteoartrite/patologia , Transdução de Sinais/fisiologia , Engenharia Tecidual
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA