Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 80
Filtrar
Mais filtros

Base de dados
País/Região como assunto
Tipo de documento
Intervalo de ano de publicação
1.
J Gen Virol ; 104(1)2023 01.
Artigo em Inglês | MEDLINE | ID: mdl-36748518

RESUMO

The lncRNA NEAT1 plays a vital role in mitochondrial function and antiviral response. We have previously identified NEAT1 as dysregulated lncRNAs and found an inverse correlation with interferon alpha-inducible protein 27 (IFI27) expression associated with developing dengue severity. However, the role of NEAT1 in dengue virus (DV) infection remains elusive. Here, we undertook a study to evaluate the functional consequences of NEAT1 and IFI27 modulation on antiviral response and viral replication in dengue infection. We observed that the knockdown of NEAT1 augmented IFI27 expression and antiviral response via the RIG-I pathway. Increased antiviral response leads to a decrease in dengue viral replication. Further study suggested that the knockdown of IFI27 augmented expression of the activating transcription factor 3 (ATF3), a negative regulator of antiviral response, and increased dengue virus replication suggesting an important role played by IFI27 in mediating antiviral response. RNA sequencing study confirmed several mitochondrial genes significantly altered upon knockdown of NEAT1 in DV-infected cells. We further verified the effect of NEAT1 knockdown on mitochondrial functions. We observed a reduced level of phospho-DRP1(S616) expression along with elongated mitochondria in DV2-infected cells. Further, NEAT1 knockdown or ectopic expression of IFI27 increased mitochondrial ROS production and cell death via activation of caspase 3. Our study points to the crucial role of NEAT1 and IFI27 in mediating antiviral response and mitochondrial dysfunction in dengue infection.


Assuntos
Dengue , Proteínas de Membrana , RNA Longo não Codificante , Humanos , Dengue/imunologia , Vírus da Dengue/fisiologia , Replicação Viral , Proteínas de Membrana/imunologia , RNA Longo não Codificante/imunologia
2.
Exp Cell Res ; 420(2): 113354, 2022 11 15.
Artigo em Inglês | MEDLINE | ID: mdl-36126717

RESUMO

BACKGROUND: Small Extracellular vesicles (EV) are emerging as crucial intercellular messengers that contribute to the physiological processes. EVs contain numerous functional proteins and nucleic acids derived from their parent cells and have different roles depending on their origin. Functionally, EVs transfer these biological materials from the parent cell to the recipient and thus exhibits a novel therapeutic platform for delivering therapeutics molecules to the target tissue. In this regard, EVs derived from stem cells such as Mesenchymal Stem Cells and iPSCs have demonstrated a higher ability to benefit regenerative medicine. Even though these stem cells share some common properties, due to the differences in their origin (cell sources, the hierarchy of potency, etc) the EVs cargo profiling and functionality may vary. METHOD: We used iTRAQ-based proteomic analysis to conduct a comprehensive and quantitative evaluation of EVs derived from iPSCs and various tissue-specific MSCs in this study. Additionally, the data was analyzed using a variety of bioinformatic tools, including ProteinPilot for peptide and protein identification and quantification; Funrich, GO, Reactome, and KEGG (Kyoto Encyclopedia of Genes and Genomes) for pathway enrichment; the STRING database, and the inBio Discover tool for identifying known and predicted Protein-Protein networks. RESULTS: Bioinformatics analysis revealed 223 differentially expressed proteins in these EVs; however, Wharton's jelly MSC-EV contained more exclusive proteins with higher protein expression levels. Additionally, 113 proteins were abundant in MSC-EVs, while others were shared between MSC-EVs and iPSC-EVs. Further, based on an in-depth examination of the proteins, their associated pathways, and their interactions with other proteins, it was determined that these proteins are involved in bone regeneration (9.3%), wound healing (4.4%), immune regulation (8.9%), cardiac regeneration (6.6%), neuro regeneration (8.9%), and hepatic regeneration (3.5%). CONCLUSION: Overall, the results of our proteomic analysis indicate that EVs derived from MSCs have a more robust profile of proteins with higher expression levels than iPSCs. This is a significant finding, as it demonstrates the critical therapeutic role of EVs in a variety of diseases, as demonstrated by enrichment analysis, their versatility, and broad application potential.


Assuntos
Vesículas Extracelulares , Células-Tronco Pluripotentes Induzidas , Células-Tronco Mesenquimais , Ácidos Nucleicos , Vesículas Extracelulares/metabolismo , Células-Tronco Mesenquimais/metabolismo , Ácidos Nucleicos/análise , Ácidos Nucleicos/metabolismo , Proteínas/metabolismo , Proteômica
3.
J Chem Phys ; 159(12)2023 Sep 28.
Artigo em Inglês | MEDLINE | ID: mdl-38127391

RESUMO

The Pauli kinetic energy functional and its functional derivative, termed Pauli potential, play a crucial role in the successful implementation of orbital-free density functional theory for electronic structure calculations. However, the exact forms of these two quantities are not known. Therefore, perforce, one employs the approximate forms for the Pauli functional or Pauli potential for performing orbital-free density functional calculations. In the present study, we developed a feed-forward neural network-based representation for the Pauli potential using a 1-dimensional (1-D) model system. We expanded density in terms of basis functions, and the coefficients of the expansion were used as input to a feed-forward neural network. Using the neural network-based representation of the Pauli potential, we calculated the ground-state densities of the 1-D model system by solving the Euler equation. We calculated the Pauli kinetic energy using the neural network-based Pauli potential employing the exact relation between the Pauli kinetic energy functional and the potential. The sum of the neural network-based Pauli kinetic energy and the von Weizsäcker kinetic energy resulted in an accurate estimation of the total kinetic energy. The approach presented in this paper can be employed for the calculation of Pauli potential and Pauli kinetic energy, obviating the need for a functional derivative. The present study is an important step in the advancement of application of machine learning-based techniques toward the orbital-free density functional theory-based methods.

4.
J Virol ; 95(21): e0040621, 2021 10 13.
Artigo em Inglês | MEDLINE | ID: mdl-34379515

RESUMO

Interferon regulatory factor 8 (IRF8), a myeloid lineage transcription factor, emerges as an essential regulator for microglial activation. However, the precise role of IRF8 during Japanese encephalitis virus (JEV) infection in the brain remains elusive. Here, we report that JEV infection enhances IRF8 expression in the infected mouse brain. Comparative transcriptional profiling of whole-brain RNA analysis and validation by quantitative reverse transcription-PCR (qRT-PCR) reveals an impaired interferon gamma (IFN-γ) and related gene expression in Irf8 knockout (Irf8-/-)-infected mice. Further, Ifnγ knockout (Ifnγ-/-) mice exhibit a reduced level of Irf8. Both Ifnγ-/- and Irf8-/- mice exhibit significantly reduced levels of activated (CD11b+ CD45hi, CD11b+ CD45lo, Cd68, and CD86) and infiltrating immune cells (Ly6C+, CD4, and CD8) in the infected brain compared to those of wild-type (WT) mice. However, a higher level of granulocyte cell (Ly6G+) infiltration is evident in Irf8-/- mice as well as the increased concentration of tumor necrosis factor alpha (TNF-α), interleukin-6 (IL-6), monocyte chemoattractant protein 1 (MCP1) levels in the brain. Interestingly, neither the Irf8-/- nor the Ifnγ-/- conferred protection against lethal JEV challenge to mice and exhibit augmentation in JEV replication in the brain. The gain of function of Irf8 by overexpressing functional IRF8 in an IRF8-deficient cell line attenuates viral replication and enhances IFN-γ production. Overall, we summarize that in the murine model of JEV encephalitis, IRF8 modulation affects JEV replication. We also show that lack of Irf8 affects immune cell abundance in circulation and the infected brain, leading to a reduction in IFN-γ level and increased viral load in the brain. IMPORTANCE Microglial cells, the resident macrophages in the brain, play a vital role in Japanese encephalitis virus (JEV) pathogenesis. The deregulated activity of microglia can be lethal for the brain. Therefore, it is crucial to understand the regulators that drive microglia phenotype changes and induce inflammation in the brain. Interferon regulatory factor 8 (IRF8) is a myeloid lineage transcription factor involved in microglial activation. However, the impact of IRF8 modulation on JEV replication remains elusive. Moreover, the pathways regulated by IRF8 to initiate and amplify pathological neuroinflammation are not well understood. Here, we demonstrated the effect of IRF8 modulation on JEV replication, microglial activation, and immune cells infiltration in the brain.


Assuntos
Encéfalo/virologia , Vírus da Encefalite Japonesa (Espécie)/imunologia , Encefalite Japonesa/imunologia , Fatores Reguladores de Interferon/genética , Interferon gama/imunologia , Replicação Viral/imunologia , Animais , Encéfalo/imunologia , Vírus da Encefalite Japonesa (Espécie)/fisiologia , Feminino , Regulação da Expressão Gênica/imunologia , Fatores Reguladores de Interferon/imunologia , Interferon gama/genética , Masculino , Camundongos , Camundongos Knockout , Microglia/imunologia , Microglia/fisiologia , Microglia/virologia , Transdução de Sinais
5.
Chemphyschem ; 23(22): e202200261, 2022 11 18.
Artigo em Inglês | MEDLINE | ID: mdl-35819846

RESUMO

The analogy between gold and hydrogen is a subject of long-standing debate. In the present work, we examine the validity of the gold-hydrogen analogy in a series of small-sized H-doped gold clusters, Aun-1 H with n varying between 2 and 10 and also investigate its dependence on the cluster size. Keeping in mind the importance of the role of structures, we make use of the genetic algorithm coupled with a density functional theory based method to exhaustively search and identify the energetically low-lying structures of each of the H-doped gold clusters. These lower energy structures of H-doped and pristine gold clusters are then employed to carry out the calculations of their electronic properties, stability analysis as well as their reactivity towards the adsorption and activation of CO and O2 molecules. Our study shows that in line with the gold-hydrogen analogy, both electronic properties and the adsorption/activation characteristics of H-doped gold clusters remain very similar to those of pristine gold clusters.


Assuntos
Ouro , Hidrogênio , Hidrogênio/química , Ouro/química , Modelos Químicos , Adsorção , Eletrônica
6.
J Gen Virol ; 102(9)2021 09.
Artigo em Inglês | MEDLINE | ID: mdl-34546869

RESUMO

Advances in proteomics have enabled a comprehensive understanding of host-pathogen interactions. Here we have characterized Japanese encephalitis virus (JEV) infection-driven changes in the mouse embryonic fibroblast (MEF) proteome. Through tandem mass tagging (TMT)-based mass spectrometry, we describe changes in 7.85 % of the identified proteome due to JEV infection. Pathway enrichment analysis showed that proteins involved in innate immune sensing, interferon responses and inflammation were the major upregulated group, along with the immunoproteasome and poly ADP-ribosylation proteins. Functional validation of several upregulated anti-viral innate immune proteins, including an active cGAS-STING axis, was performed. Through siRNA depletion, we describe a crucial role of the DNA sensor cGAS in restricting JEV replication. Further, many interferon-stimulated genes (ISGs) were observed to be induced in infected cells. We also observed activation of TLR2 and inhibition of TLR2 signalling using TLR1/2 inhibitor CU-CPT22-blocked production of inflammatory cytokines IL6 and TNF-α from virus-infected N9 microglial cells. The major proteins that were downregulated by infection were involved in cell adhesion (collagens), transport (solute carrier and ATP-binding cassette transporters), sterol and lipid biosynthesis. Several collagens were found to be transcriptionally downregulated in infected MEFs and mouse brain. Collectively, our data provide a bird's-eye view into how fibroblast protein composition is rewired following JEV infection.


Assuntos
Vírus da Encefalite Japonesa (Espécie)/fisiologia , Encefalite Japonesa/metabolismo , Encefalite Japonesa/virologia , Fibroblastos/metabolismo , Fibroblastos/virologia , Proteoma , Animais , Moléculas de Adesão Celular/metabolismo , Linhagem Celular , Colágeno/genética , Citocinas/genética , Citocinas/metabolismo , Regulação para Baixo , Encefalite Japonesa/genética , Encefalite Japonesa/imunologia , Fibroblastos/imunologia , Interações Hospedeiro-Patógeno , Imunidade Inata/genética , Inflamação , Interferons/imunologia , Metabolismo dos Lipídeos , Proteínas de Membrana/genética , Proteínas de Membrana/metabolismo , Proteínas de Membrana Transportadoras/metabolismo , Camundongos , Camundongos Endogâmicos C57BL , Nucleotidiltransferases/genética , Nucleotidiltransferases/metabolismo , Proteínas/metabolismo , Proteômica , Transdução de Sinais , Receptor 2 Toll-Like/genética , Receptor 2 Toll-Like/metabolismo , Regulação para Cima
7.
Phys Chem Chem Phys ; 23(9): 5559-5570, 2021 Mar 11.
Artigo em Inglês | MEDLINE | ID: mdl-33651070

RESUMO

Metallocarbohedrenes or metcars belong to one of the classes of stable nanoclusters having a specific stoichiometry. In spite of the available theoretical and experimental studies, the structure of pristine Ti8C12 metcar is still uncertain. We study the geometric structure of a titanium metcar, Ti8C12, together with its electronic properties and chemical activity towards adsorption and activation of CO2 molecule by means of density functional theory. Our results suggest that the CO2 molecule is strongly adsorbed and undergoes a significantly high degree of activation onto the Ti8C12 metcar. The migration of charge from titanium metcar to CO2 molecule attributes the high degree of activation of this molecule. In the infrared vibrational spectra for CO2 molecule adsorbed onto Ti8C12, we find a new signal which is absent in the corresponding spectra for gaseous CO2. In addition to adsorption energy, we also estimate the energy barrier for the dissociation of CO2 molecule to CO and O fragments on a Ti8C12 cluster. As a whole, this work reveals the ground state geometry of Ti8C12 metcar and highlights the role of this metcar in CO2 adsorption and activation, which are the key steps in designing potential catalysts for CO2 capture and its conversion to industrially valuable chemicals.

8.
J Phys Chem A ; 125(12): 2558-2572, 2021 Apr 01.
Artigo em Inglês | MEDLINE | ID: mdl-33728907

RESUMO

Adsorption and activation of CO2 is a key step in any chemical reaction, which aims to convert it to other useful chemicals. Therefore, it is important to understand the factors that drive the activation process and also search for materials that promote the process. We employ the density functional theory to explore the possibility of using small-sized bimetallic Cu-Zr clusters, Cu4-nZrn, with n = 1-3 for the above-mentioned key step. Our results suggest that after adsorption, a CO2 molecule preferably resides on Zr atoms or at the bridge and triangular faces formed by Zr atoms in bimetallic Cu-Zr clusters accompanied with its high degree of activation. Importantly, maximum activation occurs when CO2 is adsorbed on the CuZr3 cluster. Interestingly, we find that the adsorption energy of CO2 can be tuned by varying the extent of the Zr atom in Cu-Zr clusters. We rationalize the high adsorption of CO2 with the increase in the number of Zr atoms using the d-band center model and the concept of chemical hardness. The strong chemisorption and high activation of CO2 are ascribed to charge migration between Cu-Zr clusters and the CO2 molecule. We find an additional band in the infrared vibrational spectra of CO2 chemisorbed on all of the clusters, which is absent in the case of free CO2. We also observe that the energy barriers for the direct dissociation of the CO2 molecule to CO and O decrease significantly on bimetallic Cu-Zr clusters as compared to that on pure Cu4. In particular, the barrier heights are considerably small for Cu3Zr and CuZr3 clusters. This study demonstrates that Cu3Zr and CuZr3 clusters may serve as good candidates for activation and dissociation of the CO2 molecule.

9.
Small ; 16(38): e2002669, 2020 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-32803832

RESUMO

The major challenges faced by candidate electrode materials in lithium-ion batteries (LIBs) include their low electronic and ionic conductivities. 2D van der Waals materials with good electronic conductivity and weak interlayer interaction have been intensively studied in the electrochemical processes involving ion migrations. In particular, molybdenum ditelluride (MoTe2 ) has emerged as a new material for energy storage applications. Though 2H-MoTe2 with hexagonal semiconducting phase is expected to facilitate more efficient ion insertion/deinsertion than the monoclinic semi-metallic phase, its application as an anode in LIB has been elusive. Here, 2H-MoTe2 , prepared by a solid-state synthesis route, has been employed as an efficient anode with remarkable Li+ storage capacity. The as-prepared 2H-MoTe2 electrodes exhibit an initial specific capacity of 432 mAh g-1 and retain a high reversible specific capacity of 291 mAh g-1 after 260 cycles at 1.0 A g-1 . Further, a full-cell prototype is demonstrated by using 2H-MoTe2 anode with lithium cobalt oxide cathode, showing a high energy density of 454 Wh kg-1 (based on the MoTe2 mass) and capacity retention of 80% over 100 cycles. Synchrotron-based in situ X-ray absorption near-edge structures have revealed the unique lithium reaction pathway and storage mechanism, which is supported by density functional theory based calculations.

10.
Phys Chem Chem Phys ; 22(29): 16877-16886, 2020 Jul 29.
Artigo em Inglês | MEDLINE | ID: mdl-32666986

RESUMO

The first step in the conversion of CO2 to useful chemicals involves the adsorption of this molecule on a catalyst accompanied with its high degree of activation. In this paper, we explore the efficacy of small sized zirconium clusters, Zrn (n = 2-7), in the adsorption and activation of the CO2 molecule by using the density functional theory based ab initio method. The results of our calculations provide compelling evidence for the chemisorption and very high degree of activation of CO2 with the elongation of the C-O bond in the range of 1.27-1.42 Å compared to 1.16 Å for free CO2 and the deformation of the O-C-O bond angle from linear to 115-136°. This activation takes place through a charge migration from the Zrn cluster to the CO2 molecule resulting in the formation of CO2δ- species. To assess the catalytic potential of Zr-clusters for CO2 conversion, we also analyse the reaction pathways and the transition barrier heights for the dissociation of CO2 (CO2 → CO + O) on all the Zrn clusters. Our results for the dissociation of CO2 to CO and O fragments reveal that the transition barrier is small for all the Zrn clusters except for Zr2 and Zr4 and it attains a minimum value of 0.11 eV for an isomer of the Zr6 cluster. The present work clearly demonstrates that small-sized monometallic Zr-clusters are highly efficient in activating and dissociating a CO2 molecule adsorbed on these clusters.

11.
J Neurochem ; 149(4): 518-534, 2019 05.
Artigo em Inglês | MEDLINE | ID: mdl-30556910

RESUMO

MicroRNAs (miRNAs) released from the activated microglia upon neurotropic virus infection may exacerbate the neuronal damage. Here, we identified let-7a and let-7b (let-7a/b) as one of the essential miRNAs over-expressed upon Japanese Encephalitis virus (JEV) infection and released in the culture supernatant of the JEV-infected microglial cells through extracellular vesicles. The let-7a/b was previously reported to modulate inflammation in microglial cells through Toll-like receptor 7 (TLR7) pathways; although their role in accelerating JEV pathogenesis remain unexplored. Therefore, we studied the role of let-7a/b in modulating microglia-mediated inflammation during JEV infection and investigated the effect of let-7a/b-containing exosomes on primary neurons. To this end, we examined let-7a/b and NOTCH signaling pathway in TLR7 knockdown (KD) mice. We observed that TLR7 KD or inhibition of let-7a/b suppressed the JEV-induced NOTCH activation possibly via NF-κB dependent manner and subsequently, attenuated JEV-induced TNFα production in microglial cells. Furthermore, exosomes secreted from let-7a/b over-expressed microglia when transferred to uninfected mice brain induced caspase activation. Exosomes secreted from virus-infected or let-7a/b over-expressed microglia when co-incubated with mouse neuronal (Neuro2a) cells or primary cortical neurons also facilitated caspase activation leading to neuronal death. Thus, our results provide evidence for the multifaceted role of let-7a/b miRNAs in JEV pathogenesis. Let-7a/b can interact with TLR7 and NOTCH signaling pathway and enhance TNFα release from microglia. On the other hand, the exosomes secreted by JEV-infected microglia can activate caspases in uninfected neuronal cells which possibly contribute to bystander neuronal death. Cover Image for this issue: doi: 10.1111/jnc.14506.


Assuntos
Encefalite Japonesa/metabolismo , MicroRNAs/metabolismo , Microglia/metabolismo , Microglia/virologia , Neurônios/patologia , Animais , Caspases/metabolismo , Morte Celular/fisiologia , Células Cultivadas , Vírus da Encefalite Japonesa (Espécie) , Encefalite Japonesa/patologia , Exossomos/metabolismo , Técnicas de Silenciamento de Genes , Glicoproteínas de Membrana/metabolismo , Camundongos , Receptores Notch/metabolismo , Transdução de Sinais/fisiologia , Receptor 7 Toll-Like/metabolismo
12.
J Phys Chem A ; 123(10): 1973-1982, 2019 Mar 14.
Artigo em Inglês | MEDLINE | ID: mdl-30835119

RESUMO

In accordance with the well established gold-hydrogen analogy, a hydrogen atom mimics the properties of a gold atom in gold clusters. In a recent study it has been demonstrated that the properties of a hydrogen atom doped small gold cluster (Au7H) are not in conformity with the aforementioned analogy. In this paper we study the properties of the Au7H cluster exhaustively to re-examine the validity of the gold-hydrogen analogy in the context of adsorption of CO and O2 molecules on pristine gold and hydrogen atom doped gold clusters. For this purpose we first determine the most stable structure of the Au7H cluster by using an ab initio density functional theory based method with generalized gradient approximation (GGA) and Meta-GGA exchange-correlation functionals. We carry out geometry optimization by considering various planar and three-dimensional isomers of the Au7H cluster as initial geometries. We find that the lowest energy structure of Au7H is a planar one with C2 v symmetry, and it is very close to the structure of the Au8 cluster with D4 h symmetry. Furthermore, to examine the validity of the gold-hydrogen analogy we carry out a detailed investigation of the adsorption of CO and O2 molecules on the most stable as well as various other low energy isomers of the Au7H cluster. We find that the adsorption energies and the extent of activation of CO and O2 molecules on the most stable planar isomer of Au7H are almost the same as those on the parent Au8 cluster with D4 h symmetry proving the validity of the gold-hydrogen analogy. On the other hand, for the high energy three-dimensional isomers of the Au7H cluster obtained from the pristine Au8 cluster with T d symmetry, we find a significant enhancement in adsorption energy as well as the extent of activation of CO and O2 molecules as compared to those for the corresponding pristine cluster. Therefore, the high reactivity of the 3D isomer of the Au7H cluster may be attributed to its existence in a state which is higher in energy than its most stable planar isomer.

13.
J Comput Chem ; 36(29): 2177-87, 2015 Nov 05.
Artigo em Inglês | MEDLINE | ID: mdl-26409345

RESUMO

We investigate the catalytic activity of the subnanometer-sized bimetallic Au19Pt cluster for oxidation of CO via first-principles density functional theory calculations. For this purpose we consider two structurally similar and energetically close homotops of the Au19Pt cluster with the Pt atom occupying an edge (Td-E) or a facet (Td-S) site of a 20-atom tetrahedron. Using these homotops as catalysts we calculate the complete reaction paths and the thermodynamic functions corresponding to the oxidation of CO to CO2. It is found that the oxidation of CO on the Td-S isomer occurs through a smaller reaction barrier (0.38 eV) as compared with that on the Td-E isomer (0.70 eV), although the activation of O2 on the latter is much higher than that on the former. Therefore, a clear conclusion is that a higher O2 activation, which is generally believed to be the key factor for CO oxidation, solely cannot determine the catalytic efficiency of the Au-Pt bimetallic clusters. In addition, we find a stronger CO adsorption on the Td-E isomer (2.06 eV) as compared with that on the Td-S isomer (1.68 eV). Although stronger CO adsorption on the Td-E isomer leads to a higher O2 activation; however, high value of CO adsorption energy deteriorates the catalytic activity of the Td-E isomer towards the CO oxidation reaction.

14.
J Neuroinflammation ; 11: 97, 2014 May 29.
Artigo em Inglês | MEDLINE | ID: mdl-24885259

RESUMO

BACKGROUND: Microglial cells, which are resident macrophages of the central nervous system, play important roles in immune responses and pathogenesis. Japanese encephalitis virus (JEV) is a neurotropic virus that infects microglial cells in brain. Several microRNAs including miR-155 and miR-146a play an important role in defining the microglia inflammatory profile. In this study, we have investigated the effect of miR-155 and miR-146a modulation on JEV infection as well as innate immune responses in human microglial cells. METHODS: In vitro studies were performed in JEV-infected human microglial CHME3 cells. miR-155 or miR-146a were overexpressed and total RNA and protein were extracted following JEV-infection. Expression of genes involved in innate immune responses was studied by PCR array, quantitative real-time PCR (qPCR), western blot and Fluorescence activated cell sorter (FACS). JEV replication was monitored by studying the viral RNA by qPCR, protein by western blot, and titres by plaque assay. RESULTS: Overexpression of miR-155 in CHME3 cells resulted in significantly reduced JEV replication whereas miR-146a overexpression had an insignificant effect. Additionally, interferon regulatory factor 8 (IRF8) and complement factor H (CFH) were induced during JEV infection; however, this induction was attenuated in miR-155 overexpressing cells following JEV infection. Further, JEV-induced NF-κB regulated downstream gene expression was attenuated. Interestingly, an increased level of CD45, a negative regulator of microglia activation and a reduced phosphorylated-Signal Transducers and Activators of Transcription (p-STAT1) expression was observed in miR-155 overexpressing cells upon JEV infection. CONCLUSION: Induction of miR-155 in human microglial cells may negatively modulate JEV-induced innate immune gene expression and may have a beneficial role in limiting JEV replication in human microglial cells.


Assuntos
Vírus da Encefalite Japonesa (Espécie)/fisiologia , Imunidade Inata/efeitos dos fármacos , MicroRNAs/farmacologia , Microglia/efeitos dos fármacos , Microglia/virologia , Replicação Viral/efeitos dos fármacos , Análise de Variância , Linhagem Celular Transformada , Fator H do Complemento/genética , Fator H do Complemento/metabolismo , Citocinas/genética , Citocinas/metabolismo , Inibidores Enzimáticos/farmacologia , Citometria de Fluxo , Regulação Viral da Expressão Gênica/efeitos dos fármacos , Regulação Viral da Expressão Gênica/fisiologia , Humanos , Imunidade Inata/imunologia , MicroRNAs/metabolismo , NF-kappa B/metabolismo , RNA Mensageiro/metabolismo , Transdução de Sinais/efeitos dos fármacos , Transfecção
15.
BMC Cancer ; 14: 721, 2014 Sep 26.
Artigo em Inglês | MEDLINE | ID: mdl-25260533

RESUMO

BACKGROUND: Hepatitis B Virus (HBV) X protein (HBx) is known to be involved in the initiation and progression of hepatocellular carcinoma (HCC) through modulation of host gene response. Alterations in miRNA expressions are frequently noted in HCC. This study is aimed to examine the role of HBx protein in the modulation of oncogenic miRNA-21, miRNA-222 and tumor suppressor miRNA-145 in malignant hepatocytes. METHODS: Expressions of miRNA-21, miRNA-222 and miRNA-145 were measured in HepG2 cells transfected with HBx-plasmid (genotype D) and with full length HBV genome (genotype D) and also in stably HBV producing HepG2.2.15 cells using real time PCR. Their target mRNAs and proteins - PTEN, p27 and MAP3K - were analyzed by real time PCR and western blot respectively. miRNA expressions were measured after HBx/D mRNA specific siRNA treatment. The expressions of these miRNAs were analyzed in liver cirrhosis and HCC patients also. RESULTS: The study revealed a down-regulation of miRNA-21 and miRNA-222 expressions in HBx transfected HepG2 cells, pUC-HBV 1.3 plasmid transfected HepG2 cells as well as in HepG2.2.15 cells. Down regulation of miRNA-21 and miRNA-222 expression was observed in patient serum samples. Down regulation of miRNA-145 expression was observed in HepG2 cells transiently transfected with HBx and pUC-HBV1.3 plasmid as well as in patient samples but the expression of miRNA-145 was increased in HepG2.2.15 cells. Target mRNA and protein expressions were modulated in HepG2 cells and in HepG2.2.15 cell line consistent with the modulation of miRNA expressions. CONCLUSION: Thus, HBx protein differentially modulated the expression of miRNAs. The study throws light into possible way by which HBx protein acts through microRNA and thereby regulates host functioning. It might suggest new therapeutic strategies against hepatic cancer.


Assuntos
Hepatoblastoma/virologia , Cirrose Hepática/virologia , Neoplasias Hepáticas/virologia , MicroRNAs/genética , Transativadores/metabolismo , Adulto , Feminino , Células Hep G2 , Vírus da Hepatite B/fisiologia , Hepatoblastoma/genética , Humanos , Cirrose Hepática/genética , Neoplasias Hepáticas/genética , Masculino , MicroRNAs/metabolismo , Pessoa de Meia-Idade , Transdução de Sinais , Proteínas Virais Reguladoras e Acessórias
16.
J Leukoc Biol ; 115(2): 276-292, 2024 01 19.
Artigo em Inglês | MEDLINE | ID: mdl-37890093

RESUMO

Neutrophils are the most abundant granuloytes, are phenotypically heterogeneous, and exert detrimental or protective roles during antiviral response. Dengue virus has been reported to activate neutrophils. However, the effect of the dengue virus on the neutrophil phenotypes, survival, and release of inflammatory secretome is yet to be understood. Herein, we investigated the effect of dengue virus serotype 2 (DV-2) on effector functions of naïve neutrophils and studied the impact of its secretome on different immune cells. We found that DV-2 activates purified human neutrophils and causes a significant shift toward the CD16bright/CD62Ldim subtype in a multiplicity of infection and time-dependent manner. These phenotypically altered neutrophils show delayed apoptosis through nuclear factor κB and PI3K pathways and have decreased phagocytic capacity. Treatment of neutrophils with myeloperoxidase and PAD4 inhibitor before DV-2 incubation significantly reduced DV-2-induced double-stranded DNA release, suggesting that myeloperoxidase and PAD4 were involved at early stages for the neutrophil activation and double-stranded DNA release. We also report that DV-2-stimulated neutrophil secretome had a significant effect on viral infection, platelet activation, and naïve neutrophil survival via binding of tumor necrosis factor α to tumor necrosis factor receptor 1/2 receptors. Furthermore, incubation of endothelial cells with the DV-2-stimulated neutrophil secretome potentially inhibits proliferation and wound healing capacity and induces endothelial cell death, which can contribute to endothelial barrier dysfunction. In conclusion, the neutrophil-DV-2 interaction modulates the phenotype of neutrophils and the release of prosurvival and antiviral secretome that may act as a double-edged sword during dengue pathogenesis.


Assuntos
Vírus da Dengue , Humanos , Neutrófilos , Sorogrupo , Células Endoteliais/metabolismo , Fosfatidilinositol 3-Quinases/metabolismo , Secretoma , Apoptose , Peroxidase/metabolismo , DNA/metabolismo , Antivirais/metabolismo
17.
J Leukoc Biol ; 115(1): 130-148, 2024 01 05.
Artigo em Inglês | MEDLINE | ID: mdl-37648666

RESUMO

While neutrophil activation during dengue virus infection is known, the effect of dengue virus infection on neutrophil biogenesis has not been studied. We demonstrate that dengue virus serotype 2 induces the differentiation of mice progenitor cells ex vivo toward the CD11b+Ly6C+Ly6G+ granulocyte population. We further observed an expansion of CD11b+Ly6CintLy6Glow myeloid cells in the bone marrow of dengue virus serotype 2-infected AG129 mice with low CXCR2 expression, implying an immature population. Additionally, dengue virus serotype 2 alone could induce the differentiation of promyelocyte cell line HL-60 into neutrophil-like cells, as evidenced by increased expression of CD10, CD66b, CD16, CD11b, and CD62L, corroborating the preferential shift toward neutrophil differentiation by dengue virus serotype 2 in the mouse model of dengue infection. The functional analysis showed that dengue virus serotype 2-induced neutrophil-like cells exhibited reduced phagocytic activity and enhanced NETosis, as evidenced by the increased production of myeloperoxidase, citrullinated histones, extracellular DNA, and superoxide. These neutrophil-like cells lose their ability to proliferate irreversibly and undergo arrest in the G0 to G1 phase of the cell cycle. Further studies show that myeloperoxidase-mediated signaling operating through the reactive oxygen species axis may be involved in dengue virus serotype 2-induced proliferation and differentiation of bone marrow cells as ABAH, a myeloperoxidase inhibitor, limits cell proliferation in vitro and ex vivo, affects the cell cycle, and reduces reactive oxygen species production. Additionally, myeloperoxidase inhibitor reduced NETosis and vascular leakage in dengue virus serotype 2-infected AG129 mice. Our study thus provides evidence that dengue virus serotype 2 can accelerate the differentiation of bone marrow progenitor cells into neutrophils through myeloperoxidase and modulate their functions.


Assuntos
Vírus da Dengue , Dengue , Viroses , Animais , Camundongos , Neutrófilos/metabolismo , Medula Óssea/metabolismo , Espécies Reativas de Oxigênio , Diferenciação Celular , Peroxidase
18.
Cureus ; 16(3): e56857, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38659549

RESUMO

INTRODUCTION: Manic depressive psychosis (MDP) or bipolar disorder, a prevalent psychiatric condition globally and in the Indian population, has been attributed to various pathological mechanisms. Hydrogen sulphide (H2S), a member of the gasotransmitter family, may be linked to the development of bipolar disorder because it plays a crucial role in maintaining proper neuronal function in terms of excitability, plasticity, and homeostatic functions. There is very little data regarding the role of the gasotransmitter H2S in MDP in terms of its association, diagnostic ability, and severity prediction, which led us to conduct this study among MDP patients in the Sub-Himalayan region of West Bengal. METHODS: This was an observational case-control study performed in the Department of Biochemistry, North Bengal Medical College and Hospital, Siliguri, West Bengal, India, from January 2022 to December 2022. Fifty diagnosed MDP patients and 50 healthy age- and sex-matched control subjects satisfying the inclusion and exclusion criteria were studied. The H2S level in the blood was assayed using the standardised spectrophotometric methylene blue method. The severity of depression was assessed by Hamilton Depression Rating Scale (HAM-D) scoring. RESULTS: Of the 50 MDP patients, 45 (90%) were in the depressive phase, and five (10%) were in the manic phase. Of the 45 depressive patients, eight (17.8%) had mild depression, 12 (26.7%) had moderate depression, 19 (42.2%) had severe depression, and six (13.3%) had very severe depression. The mean H2S level in MDP patients (41.98±18.88 µmol/l) was significantly (P<0.05) lower than that in control subjects (99.20± 15.20 µmol/l). It was also observed that the mean H2S level in MDP patients decreased with the duration of the disease but was not statistically significant. The mean H2S levels in the different depression severity groups were found to be significantly different (P<0.001). Receiver operating characteristic (ROC) curve analysis revealed that a cut-off value of H2S <78.5 µmol/l was associated with MDP, with a sensitivity of 96% and a specificity of 88%, and a cut-off value of H2S < 53 µmol/l predicted the severity of depression with a sensitivity of 89.3% and a specificity of 76.5%. CONCLUSION: The significant association of the gasotransmitter H2S in MDP patients and its role as a diagnostic and severity predictive marker can help us to employ proper measures for better management of MDP and improving quality of life.

19.
EMBO Mol Med ; 16(1): 185-217, 2024 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-38177535

RESUMO

Japanese encephalitis virus (JEV) pathogenesis is driven by a combination of neuronal death and neuroinflammation. We tested 42 FDA-approved drugs that were shown to induce autophagy for antiviral effects. Four drugs were tested in the JE mouse model based on in vitro protective effects on neuronal cell death, inhibition of viral replication, and anti-inflammatory effects. The antipsychotic phenothiazines Methotrimeprazine (MTP) & Trifluoperazine showed a significant survival benefit with reduced virus titers in the brain, prevention of BBB breach, and inhibition of neuroinflammation. Both drugs were potent mTOR-independent autophagy flux inducers. MTP inhibited SERCA channel functioning, and induced an adaptive ER stress response in diverse cell types. Pharmacological rescue of ER stress blocked autophagy and antiviral effect. MTP did not alter translation of viral RNA, but exerted autophagy-dependent antiviral effect by inhibiting JEV replication complexes. Drug-induced autophagy resulted in reduced NLRP3 protein levels, and attenuation of inflammatory cytokine/chemokine release from infected microglial cells. Our study suggests that MTP exerts a combined antiviral and anti-inflammatory effect in JEV infection, and has therapeutic potential for JE treatment.


Assuntos
Vírus da Encefalite Japonesa (Espécie) , Encefalite Japonesa , Animais , Camundongos , Vírus da Encefalite Japonesa (Espécie)/fisiologia , Metotrimeprazina/farmacologia , Metotrimeprazina/uso terapêutico , Doenças Neuroinflamatórias , Encefalite Japonesa/tratamento farmacológico , Encefalite Japonesa/patologia , Antivirais/farmacologia , Antivirais/uso terapêutico , Autofagia , Anti-Inflamatórios/uso terapêutico
20.
J Phys Chem A ; 117(23): 4838-50, 2013 Jun 13.
Artigo em Inglês | MEDLINE | ID: mdl-23713825

RESUMO

The conformational preferences of the industrially significant ethyl propionate (EP) molecule have been investigated from the Raman and FTIR spectra, aided by ab initio and Car-Parrinello molecular dynamics (CPMD) simulation studies. The vibrational signatures of various rotameric forms of the EP molecule have been assigned for the first time from the potential energy distributions (PEDs). The critical analyses of the vibrational signatures reveal the coexistences of the Trans-Trans (TT), Trans-Antigauche (TG(-)) [Trans-Gauche (TG(+))], Antigauche-Trans (G(-)T) [Gauche-Trans (G(+)T)], Antigauche-Antigauche (G(-)G(-)) [Gauche-Gauche (G(+)G(+))], and Gauche-Antigauche (G(+)G(-)) [Antigauche-Gauche (G(-)G(+))] forms of the EP molecule at room and at high temperatures. However, at low temperature (ca. 70 °C), the TT and TG(-) forms of the EP molecule is estimated to be preponderant. The Car-Parrinello molecular dynamics simulation studies of the EP molecule estimated at high, room, and low temperatures are also in harmony with our conjecture as suggested from the vibrational analyses. The ab intio molecular dynamics simulations are observed to be a useful tool for the conformational analyses of the molecule.


Assuntos
Simulação de Dinâmica Molecular , Propionatos/química , Teoria Quântica , Temperatura , Conformação Molecular , Espectroscopia de Infravermelho com Transformada de Fourier , Análise Espectral Raman
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA