Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 34
Filtrar
1.
Inorg Chem ; 2024 Jul 06.
Artigo em Inglês | MEDLINE | ID: mdl-38970493

RESUMO

The structure-property relationship considering isomerism-tuned photoluminescence and efficient catalytic activity of silver nanoclusters (NCs) is exclusive. Asymmetrical dithiophosphonate NH4[S2P(OR)(p-C6H4OCH3)] ligated first atomically precise silver NCs [Ag21{S2P(OR)(p-C6H4OCH3)}12]PF6 {where, R = nPr (1), Et (2)} were established by single-crystal X-ray diffraction and characterized by electrospray ionization mass spectrometry, NMR (31P, 1H, 2H), X-ray photoelectron spectroscopy, UV-visible, energy-dispersive X-ray spectroscopy, Fourier transforms infrared, thermogravimetric analysis, etc. NCs 1 and 2 consist of eight silver atoms in a cubic framework and enclose an Ag@Ag12-centered icosahedron to constitute an Ag21 core of Th symmetry, which is concentrically inscribed within the S24 snub-cube, P12 cuboctahedron, and the O12 truncated tetrahedron formed by 12 dithiophosphonate ligands. These NCs facilitate to be an eight-electron superatom (1S21P6), in which eight capping Ag atoms exhibit structural isomerism with documented isoelectronic [Ag21{S2P(OiPr)2}12]PF6, 3. In contrast to 3, the stapling of dithiophosphonates in 1 and 2 triggered bluish emission within the 400 to 500 nm region at room temperature. The density functional theory study rationalized isomerization and optical properties of 1, 2, and 3. Both (1, and 2) clusters catalyzed a decarboxylative acylarylation reaction for rapid oxindole synthesis in 99% yield under ambient conditions and proposed a multistep reaction pathway. Ultimately, this study links nanostructures to their physical and catalytic properties.

2.
Org Biomol Chem ; 22(9): 1821-1833, 2024 Feb 28.
Artigo em Inglês | MEDLINE | ID: mdl-38332745

RESUMO

We report a metal-free procedure for the sustainable synthesis of carbamoylated dihydroquinolinones via tandem addition-cyclization of carbamoyl radicals to cinnamamides. Readily accessible, non-toxic and inexpensive oxamic acids are used as carbamoyl radical precursors. This highly straightforward method provides a mild and environmentally friendly route showing good atom economy and excellent functional group tolerance to obtain diverse medicinally important carbamoylated dihydroquinolinones in one pot. The cascade cyclization is also modular and step-economical with a wide substrate scope and the products were obtained in good to excellent yields. Additionally, the tolerance to air and water, operational simplicity, low cost and scalability enhance the practical value of the proposed synthetic strategy. Preliminary mechanistic studies reveal that cheap and environment-friendly ammonium persulfate acts as a radical initiator in the cascade process and generates carbamoyl radicals from oxamic acids. The synthetic utility of this method is further demonstrated by late stage functionalization of drug molecules with good yields.

3.
Environ Monit Assess ; 196(7): 609, 2024 Jun 11.
Artigo em Inglês | MEDLINE | ID: mdl-38861167

RESUMO

The phenomenon of urban heat island (UHI) is characterized by industrial, economic development, unplanned and unregulated land use as well as a rapid increase in urban population, resulting a warmer inner core in contrast to the surrounding natural environment, thus requiring immediate attention for a sustainable urban environment. This study examined the land use/land cover (LULC) change, pattern of spectral indices (Normalized Difference Vegetation Index, NDVI; Normalized Difference Water Index, NDWI; Normalized Difference Built-up Index, NDBI and Normalized Difference Bareness Index, NDBaI), retrieval of land surface temperature (LST) and Urban Thermal Field Variance Index (UTFVI) as well as identification of UHI from 2000 to 2022. The relationship among LST and LULC spectral indices was estimated using Pearson's correlation coefficient. The Landsat-5 (TM) and Landsat-8 (OLI/TIRS) satellite data have been used, and all tasks were completed through various geospatial tools like ArcGIS 10.8, Google Earth Engine (GEE), Erdas Imagine 2014 and R-Programming. The result of this study depicts over the period that built-up area and water bodies increased by 119.78 and 35.70%, respectively. On the contrary, fallow and barren decreased by 55.33 and 32.31% respectively over the period. The mean and maximum LST increased by 3.61 °C and 2.62 °C, and the study reveals that a high concentration of UTFVI and UHI in industrial areas, coal mining sites and their surroundings, but the core urban area has observed low LST and intensity of UHI than the peripheral areas due to maintained vegetation cover and water bodies. An inverse relationship has been found among LST, NDVI and NDWI, while adverse relationships were observed among LST, NDBI and NDBaI throughout the period. Sustainable environment planning is needful for the urban area, as well as the periphery region and plantation is one of the controlling measures of LST and UHI increment. This work provides the scientific base for the study of the thermal environment which can be one of the variables for planning of Asansol City and likewise other cities of the country as well as the world.


Assuntos
Cidades , Monitoramento Ambiental , Índia , Monitoramento Ambiental/métodos , Imagens de Satélites , Temperatura Alta , Sistemas de Informação Geográfica , Urbanização , Temperatura
4.
J Org Chem ; 88(15): 11010-11022, 2023 Aug 04.
Artigo em Inglês | MEDLINE | ID: mdl-37463356

RESUMO

Visible-light-promoted metal- and photocatalyst-free radical cascade cyclization of cinnamamides with α-oxocarboxylic acids is described for sustainable synthesis of diverse pharmaceutically important dihydroquinolinone scaffolds in one pot under mild conditions. The decarboxylative cascade cyclization proceeded efficiently at room temperature without the need for expensive photocatalysts such as Ir or Ru complexes, which indicates the practicability and environmentally benign nature of this protocol. Preliminary mechanistic studies reveal that the blue LED irradiation efficiently cleaves the I-O bond of the hypervalent iodine reagent PhI(O2CCOAr)2 formed through ligand exchange between iodobenzene diacetate and arylglyoxylic acid to initiate the cascade reaction. The synthetic value of this operationally simple and energy-efficient method is further demonstrated by late-stage functionalization of drug molecules in excellent yields.

5.
Inorg Chem ; 62(15): 6092-6101, 2023 Apr 17.
Artigo em Inglês | MEDLINE | ID: mdl-37021405

RESUMO

The preparation of high-nuclearity silver nanoclusters in quantitative yield remains exclusive and their potential applications in the catalysis of organic reactions are still undeveloped. Here, we have synthesized a quantum dot (QD)-based catalyst, [Ag62S13(SBut)32](PF6)4 (denoted as Ag62S12-S) in excellent yield that enables the direct synthesis of pharmaceutically precious 3,4-dihydroquinolinone in 92% via a decarboxylative radical cascade reaction of cinnamamide with α-oxocarboxylic acid under mild reaction conditions. In comparison, a superatom [Ag62S12(SBut)32](PF6)2 (denoted as Ag62S12) with identical surface anatomy and size, but without a central S2- atom in the core, gives an improved yield (95%) in a short time and exhibits higher reactivity. Multiple characterization techniques (single-crystal X-ray diffraction, nuclear magnetic resonance (1H and 31P), electrospray ionization mass spectrometry, energy dispersive X-ray spectroscopy, Brunauer-Emmett-Teller (BET), Fourier-transform infrared spectroscopy, X-ray photoelectron spectroscopy, and thermogravimetric analysis) confirm the formation of Ag62S12-S. The BET results expose the total active surface area in supporting a single e- transfer reaction mechanism. Density functional theory reveals that leaving the central S atom of Ag62S12-S leads to higher charge transfer from Ag62S12 to the reactant, accelerates the decarboxylation process, and correlates the catalytic properties with the structure of the nanocatalyst.

6.
J Org Chem ; 87(17): 11644-11655, 2022 09 02.
Artigo em Inglês | MEDLINE | ID: mdl-35977049

RESUMO

We report a mild and efficient metal-free one-pot procedure for the synthesis of N-sulfonyl amidines via the direct reaction of sulfonamides with secondary amines without using any additives. A wide range of substrates with variety of functional groups is well tolerated under the reaction conditions. Preliminary mechanistic studies indicate that the secondary amine plays a dual role as a C1 source of the amidine group and an aminating agent. Synthetic utility of this method is shown in the late-stage functionalization of drug molecules on the gram scale.


Assuntos
Amidinas , Aminas , Aminas/química , Metais , Sulfonamidas
7.
Inorg Chem ; 60(16): 12355-12366, 2021 Aug 16.
Artigo em Inglês | MEDLINE | ID: mdl-34320803

RESUMO

Altering the morphology of electrochemically active nanostructured materials could fundamentally influence their subsequent catalytic as well as oxygen evolution reaction (OER) performance. Enhanced OER activity for mixed-metal spinel-type sulfide (CuCo2S4) nanorods is generally done by blending the material that has high conductive supports together with those having a high surface volume ratio, for example, graphitic carbon nitrides (g-C3N4). Here, we report a noble-metal-free CuCo2S4 nanorod-based electrocatalyst appropriate for basic OER and neutral media, through a simple one-step thermal decomposition approach from its molecular precursors pyrrolidine dithiocarbamate-copper(II), Cu[PDTC]2, and pyrrolidine dithiocarbamate-cobalt(II), Co[PDTC]2 complexes. Transmission electron microscopy (TEM) images as well as X-ray diffraction (XRD) patterns suggest that as-synthesized CuCo2S4 nanorods are highly crystalline in nature and are connected on the g-C3N4 support. Attenuated total reflectance-Fourier-transform infrared (ATR-FTIR), X-ray photoelectron spectroscopy (XPS), and Raman spectroscopy studies affirm the successful formation of bonds that bridge (Co-N/S-C) at the interface of CuCo2S4 nanorods and g-C3N4. The kinetics of the reaction are expedited, as these bridging bonds function as an electron transport chain, empowering OER electrocatalytically under a low overpotential (242 mV) of a current density at 10 mA cm-2 under basic conditions, resulting in very high durability. Moreover, CuCo2S4/g-C3N4 composite nanorods exhibit a high catalytic activity of OER under a neutral medium at an overpotential of 406 mV and a current density of 10 mA cm-2.

8.
J Nanosci Nanotechnol ; 18(1): 256-263, 2018 01 01.
Artigo em Inglês | MEDLINE | ID: mdl-29768838

RESUMO

Semiconduction nanoparticles are intensively studied due to their huge potential in optoelctronic applications. Here we report an efficient chemical route for hydrothermal synthesis of aggregated mesoporous cadmium sulfide (CdS) nanoparticles using supramolecular-assembly of ionic and water soluble sodium salicylate as the capping agent. The nanostructure, mesophase, optical property and photoconductivity of these mesoporous CdS materials have been characterized by using small and wide angle powder X-ray diffraction (XRD), transmission electron microscopy (TEM), scanning electron microscopy (SEM), N2-sorption, Raman analysis, Fourier transformed infrared (FT-IR), UV-Visible DSR spectroscopy, and photoconductivity measurement. Wide angle XRD pattern and high resolution TEM image analysis suggested that the particle size of the materials is within 10 nm and the nanoparticles are in well-crystallized cubic phase. Mesoporous CdS nanoparticles showed drastically enhanced photoelectrochemical response under visible light irradiation on entrapping a photosensitizer (dye) molecule in the interparticle spaces. Efficient synthesis strategy and the enhanced photo response in the mesoporous CdS material could facilitate the designing of other porous semiconductor oxide/sulfide and their applications in photon-to-electron conversion processes.

10.
Bioorg Med Chem ; 22(1): 406-18, 2014 Jan 01.
Artigo em Inglês | MEDLINE | ID: mdl-24315189

RESUMO

Inorganic pyrophosphatases are potential targets for the development of novel antibacterial agents. A pyrophosphatase-coupled high-throughput screening assay intended to detect o-succinyl benzoic acid coenzyme A (OSB CoA) synthetase inhibitors led to the unexpected discovery of a new series of novel inorganic pyrophosphatase inhibitors. Lead optimization studies resulted in a series of 3-(3-aryl-pyrrolidin-1-yl)-5-aryl-1,2,4-triazine derivatives that were prepared by an efficient synthetic pathway. One of the tetracyclic triazine analogues 22h displayed promising antibiotic activity against a wide variety of drug-resistant Staphylococcus aureus strains, as well as activity versus Mycobacterium tuberculosis and Bacillus anthracis, at a concentration that was not cytotoxic to mammalian cells.


Assuntos
Pirofosfatase Inorgânica/química , Triazinas/síntese química , Antibacterianos/síntese química , Antibacterianos/farmacologia , Ensaios de Triagem em Larga Escala , Mycobacterium tuberculosis/efeitos dos fármacos , Staphylococcus aureus/efeitos dos fármacos , Relação Estrutura-Atividade
11.
Artigo em Inglês | MEDLINE | ID: mdl-38761262

RESUMO

Meteorological conditions significantly impact ambient air quality in urban environments. This study focuses on Asansol, known as the "Coal City" and the "Industrial Heart of West Bengal," a notable hotspot for air pollution. Despite its significance, limited research has addressed the influence of meteorological factors on key air pollutants in this urban area. From January 2019 to December 2023, this investigation explores the relationships between meteorological parameters (including atmospheric temperature, relative humidity, rainfall, wind speed) and the concentrations of crucial air pollutants (PM2.5, PM10, NO2, SO2). Temporal trends in air pollutant concentrations are also analysed. The Spearman correlation method is used to establish associations between pollutant concentrations and meteorological variables, while multiple linear regression (MLR) models are employed to assess meteorological factors and potential impact on pollutant concentrations. The analysis reveals a decreasing trend in pollutant concentrations in Asansol. Temperature exhibits negative correlations with all pollutants in all seasons except for a positive correlation during the monsoon. Rainfall consistently displays significant negative correlations with pollutants in all seasons. Relative humidity is negatively correlated with pollutants in all seasons, and wind speed, except during the post-monsoon season, shows negative correlations with all pollutants. Linear models excel in predicting particulate matter concentrations but perform poorly in predicting gaseous contaminants. Accounting for seasonal fluctuations and meteorological parameters, this research enhances the accuracy of air pollution forecasting, contributing to a better understanding of air quality dynamics in Asansol and similar urban areas.

12.
Neural Netw ; 164: 1-20, 2023 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-37141818

RESUMO

Recently, remote sensing community has seen a surge in the use of multimodal data for different tasks such as land cover classification, change detection and many more. However, handling multimodal data requires synergistically using the information from different sources. Currently, deep learning (DL) techniques are being religiously used in multimodal data fusion owing to their superior feature extraction capabilities. But, DL techniques have their share of challenges. Firstly, DL models are mostly constructed in the forward fashion limiting their feature extraction capability. Secondly, multimodal learning is generally addressed in a supervised setting, which leads to high labelled data requirement. Thirdly, the models generally handle each modality separately, thus preventing any cross-modal interaction. Hence, we propose a novel self-supervision oriented method of multimodal remote sensing data fusion. For effective cross-modal learning, our model solves a self-supervised auxiliary task to reconstruct input features of one modality from the extracted features of another modality, thus enabling more representative pre-fusion features. To counter the forward architecture, our model is composed of convolutions both in backward and forward directions, thus creating self-looping connections, leading to a self-correcting framework. To facilitate cross-modal communication, we have incorporated coupling across modality-specific extractors using shared parameters. We evaluate our approach on three remote sensing datasets, namely Houston 2013 and Houston 2018, which are HSI-LiDAR datasets and TU Berlin, which is an HSI-SAR dataset, where we achieve the respective accuracy of 93.08%, 84.59% and 73.21%, thus beating the state of the art by a minimum of 3.02%, 2.23% and 2.84%.


Assuntos
Redes Neurais de Computação , Tecnologia de Sensoriamento Remoto , Tecnologia de Sensoriamento Remoto/métodos
13.
RSC Adv ; 12(6): 3738-3744, 2022 Jan 24.
Artigo em Inglês | MEDLINE | ID: mdl-35425395

RESUMO

Among the accessible techniques, the production of hydrogen by electrocatalytic water oxidation is the most established process, which comprises oxygen evolution reaction (OER) and hydrogen evolution reaction (HER). Here, we synthesized a genomic DNA-guided porous Cu2(OH)PO4/Co3(PO4)2·8H2O rolling pin shape composite structure in one pot. The nucleation and development of the porous rolling pin shape Cu2(OH)PO4/Co3(PO4)2·8H2O composite was controlled and stabilized by the DNA biomolecules. This porous rolling pin shape composite was explored towards electrocatalytic water oxidation for both OER and HER as a bi-functional catalyst. The as-prepared catalyst exhibited a very high OER and HER activity compared to its various counterparts in the absence of an external binder (such as Nafion). The synergistic effects between Cu and Co metals together with the porous structure of the composite greatly helped in enhancing the catalytic activity. These outcomes undoubtedly demonstrated the beneficial utilization of the genomic DNA-stabilised porous electrocatalyst for OER and HER, which has never been observed.

14.
Plants (Basel) ; 11(19)2022 Oct 10.
Artigo em Inglês | MEDLINE | ID: mdl-36235529

RESUMO

Drought is a detrimental factor to gaining higher yields in rice (Oryza sativa L.), especially amid the rising occurrence of drought across the globe. To combat this situation, it is essential to develop novel drought-resilient varieties. Therefore, screening of drought-adaptive genotypes is required with high precision and high throughput. In contemporary emerging science, high throughput plant phenotyping (HTPP) is a crucial technology that attempts to break the bottleneck of traditional phenotyping. In traditional phenotyping, screening significant genotypes is a tedious task and prone to human error while measuring various plant traits. In contrast, owing to the potential advantage of HTPP over traditional phenotyping, image-based traits, also known as i-traits, were used in our study to discriminate 110 genotypes grown for genome-wide association study experiments under controlled (well-watered), and drought-stress (limited water) conditions, under a phenomics experiment in a controlled environment with RGB images. Our proposed framework non-destructively estimated drought-adaptive plant traits from the images, such as the number of leaves, convex hull, plant-aspect ratio (plant spread), and similarly associated geometrical and morphological traits for analyzing and discriminating genotypes. The results showed that a single trait, the number of leaves, can also be used for discriminating genotypes. This critical drought-adaptive trait was associated with plant size, architecture, and biomass. In this work, the number of leaves and other characteristics were estimated non-destructively from top view images of the rice plant for each genotype. The estimation of the number of leaves for each rice plant was conducted with the deep learning model, YOLO (You Only Look Once). The leaves were counted by detecting corresponding visible leaf tips in the rice plant. The detection accuracy was 86-92% for dense to moderate spread large plants, and 98% for sparse spread small plants. With this framework, the susceptible genotypes (MTU1010, PUSA-1121 and similar genotypes) and drought-resistant genotypes (Heera, Anjali, Dular and similar genotypes) were grouped in the core set with a respective group of drought-susceptible and drought-tolerant genotypes based on the number of leaves, and the leaves' emergence during the peak drought-stress period. Moreover, it was found that the number of leaves was significantly associated with other pertinent morphological, physiological and geometrical traits. Other geometrical traits were measured from the RGB images with the help of computer vision.

15.
ACS Appl Mater Interfaces ; 14(5): 6570-6581, 2022 Feb 09.
Artigo em Inglês | MEDLINE | ID: mdl-35084167

RESUMO

Development of economical and high-performance electrocatalysts for the oxygen evolution reaction (OER) is of tremendous interest for future applications as sustainable energy materials. Here, a unique member of efficient OER electrocatalysts has been developed based upon structurally versatile dumbbell-shaped ternary transition-metal (Cu, Ni, Co) phosphates with a three-dimensional (3D) (Cu2(OH)(PO4)/Ni3(PO4)2·8H2O/Co3(PO4)2·8H2O) (CNCP) structure. This structure is prepared using a simple aqueous stepwise addition of metal ion source approach. Various structural investigations demonstrate highly crystalline nature of the composite structure. Apart from the unique structural aspect, it is important that the CNCP composite structure has proved to be an excellent electrocatalyst for OER performance in comparison with its binary or constituent phosphate under alkaline and neutral conditions. Notably, the CNCP electrocatalyst displays a much lower overpotential of 224 mV at a current density of 10 mA cm-2 and a lower Tafel slope of 53 mV dec-1 with high stability in alkaline medium. In addition, X-ray photoelectron spectroscopy analysis suggested that the activity and long-term durability for the OER of the ternary 3D metal phosphate are due to the presence of electrochemically dynamic constituents such as Ni and Co and their resulting synergistic effects, which was further supported by theoretical studies. Theoretical calculations also reveal that the incredible OER execution was ascribed to the electron redistribution set off in the presence of Ni and Cu and the most favorable interaction between the *OOH intermediate and the active sites of CNCP. This work may attract the attention of researchers to construct efficient 3D ternary metal phosphate catalysts for various applications in the field of electrochemistry.

16.
J Am Chem Soc ; 132(3): 1159-71, 2010 Jan 27.
Artigo em Inglês | MEDLINE | ID: mdl-20038144

RESUMO

An account of the total synthesis of celogentin C is presented. A right-to-left synthetic approach to this bicyclic octapeptide was unsuccessful due to an inability to elaborate derivatives of the right-hand ring. In the course of these efforts, it was discovered that the mild Braslau modification of the McFadyen-Stevens reaction offers a useful method of reducing recalcitrant esters to aldehydes. A left-to-right synthetic strategy was then examined. The unusual Leu-Trp side-chain cross-link present in the left-hand macrocycle was fashioned via a three-step sequence comprised of an intermolecular Knoevenagel condensation, a radical conjugate addition, and a SmI(2)-mediated nitro reduction. A subsequent macrolactamization provided the desired ring system. The high yield and concise nature of the left-hand ring synthesis offset the modest diastereoselectivity of the radical conjugate addition. Formation of the Trp-His side-chain linkage characteristic of the right-hand ring was then accomplished by means of an indole-imidazole oxidative coupling. Notably, Pro-OBn was required as an additive in this reaction. Detailed mechanistic investigations indicated that Pro-OBn moderates the concentration of NCS in the reaction mixture, thereby minimizing the production of an undesired dichlorinated byproduct. The natural product was obtained after macrolactamization and deprotection. The chemical shifts of the imidazole hydrogen atoms exhibited significant dependence on temperature, concentration, and pH. Antitumor screening indicated that celogentin C inhibits the growth of some cancer cell lines.


Assuntos
Peptídeos Cíclicos/síntese química , Conformação Molecular , Peptídeos Cíclicos/química , Estereoisomerismo
17.
J Nanosci Nanotechnol ; 20(5): 2858-2866, 2020 05 01.
Artigo em Inglês | MEDLINE | ID: mdl-31635622

RESUMO

Immobilization of transition metal complexes at the surface of 2D-hexagonal functionalized SBA-15 material is one of the promising strategies in designing an efficient catalytic system for the olefin epoxidation reaction. Here we have immobilized Mn(III) on the Schiff-base anchore 2D-hexagonally ordered functionalised mesoporous SBA-15 material. Powder X-ray diffraction (PXRD), N2-sorption and high resolution transmission electron microscopic (HRTEM) studies of the resulting SBA-15-SB-Mn material suggested 2D-hexagonally ordered porous nanostructure and X-ray photoelectron spectroscopy (XPS) analysis suggested the presence of surface bound Mn(III) species in this nanomaterial. This mesoporous material showed excellent performance in the selective catalytic oxidation of various alkenes to the corresponding epoxides in the presence of tert-butyl hydroperoxide (TBHP, 70% aqueous solution) as oxidant under solvent-free mild reaction conditions together with high recycling efficiency.

18.
J Org Chem ; 73(22): 8973-8, 2008 Nov 21.
Artigo em Inglês | MEDLINE | ID: mdl-18947256

RESUMO

A set of second-generation DBFOX ligands possessing extended aryl or benzyl-type groups was synthesized. The requisite amino alcohols were either commercially available (DBFOX/Bn) or constructed via Sharpless asymmetric aminohydroxylation (DBFOX/Nap, DBFOX/ t-BuPh, DBFOX/Pip) or phase-transfer-catalyzed asymmetric alkylation (DBFOX/MeNap). Complexes of the ligands with Mg(NTf2)2 were evaluated as promoters of enantioselective radical conjugate additions to alpha,beta-unsaturated alpha-nitro amides and esters. Reactions employing the DBFOX/Nap ligand exhibited improved enantioselectivity relative to previously published additions mediated by DBFOX/Ph. However, the relatively modest increase in diastereomeric ratio suggests that our substrate-Lewis acid binding model, which was formulated based on results from DBFOX/Ph-promoted radical conjugate additions, is in need of revision.


Assuntos
Aminoácidos/síntese química , Aminoácidos/química , Benzeno/química , Ligantes , Estereoisomerismo , Especificidade por Substrato
19.
Org Lett ; 20(24): 7790-7793, 2018 12 21.
Artigo em Inglês | MEDLINE | ID: mdl-30517009

RESUMO

A previously undescribed reaction involving the formation of a thiazolidin-5-imine linkage was developed for bioconjugation. Being highly specific and operating in aqueous media, this simple condensation reaction is used to chemoselectively label peptides, proteins, and living cells under physiological conditions without the need to use toxic catalysts or reducing reagents.


Assuntos
Corantes Fluorescentes/química , Iminas/química , Imagem Óptica , Proteínas/análise , Tiazolidinas/química , Corantes Fluorescentes/síntese química , Células HeLa , Humanos , Iminas/síntese química , Modelos Moleculares , Estrutura Molecular , Coloração e Rotulagem , Tiazolidinas/síntese química
20.
Colloids Surf B Biointerfaces ; 150: 352-361, 2017 Feb 01.
Artigo em Inglês | MEDLINE | ID: mdl-27847225

RESUMO

In the global context of increasing colonic diseases, colon specific oral drug delivery systems have shown promise as an effective therapeutic modality. Herein, we developed a mesoporous silica nanoparticle (MSN) based enzyme responsive materials for colon specific drug delivery. We have utilized guar gum, a natural carbohydrate polymer as a capping layer to contain a model drug, such as 5-flurouracil (5FU) within the mesoporous channels of MSN. Analytical characterization including electron microscopy, PXRD, nitrogen sorption, thermogravimetric analysis and FTIR, confirmed that the synthesized MSN with size less than 100nm is of MCM-41type. The studies further showed that the MSN maintained their discrete nanoparticle identity after guar gum capping through non-covalent interaction. The release of 5FU from guar gum capped MSN (GG-MSN) was specifically triggered via enzymatic biodegradation of guar gum by colonic enzymes in the simulated colonic microenvironment. Subsequently, the released drug manifested anticancer activity in colon cancer cell lines in vitro confirmed by flow cytometry and biochemical assay. The drug loaded GG-MSN system also demonstrated near perfect 'zero release' property in absence of enzymes in different simulated conditions of the gastrointestinal tract. Our study provides an important intermediate step to apply such GG-MSN based engineered nanomaterials for further detailed in vivo investigation.


Assuntos
Colo/metabolismo , Sistemas de Liberação de Medicamentos , Galactanos/química , Mananas/química , Nanopartículas Metálicas/química , Gomas Vegetais/química , Dióxido de Silício/química , Administração Oral , Adsorção , Antineoplásicos/administração & dosagem , Linhagem Celular Tumoral , Proliferação de Células , Sobrevivência Celular , Citometria de Fluxo , Fluoruracila/administração & dosagem , Trato Gastrointestinal/efeitos dos fármacos , Humanos , Microscopia Eletrônica , Nitrogênio/química , Polímeros/química , Espectroscopia de Infravermelho com Transformada de Fourier , Temperatura , Termogravimetria , Difração de Raios X
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA