Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 47
Filtrar
1.
Bioorg Chem ; 99: 103787, 2020 06.
Artigo em Inglês | MEDLINE | ID: mdl-32251947

RESUMO

Leishmaniasis and microbial infections are two of the major contributors to global mortality and morbidity rates. Hence, development of novel, effective and safer antileishmanial and antimicrobial agents having reduced side effects are major priority for researchers. Two series of N-substituted indole derivatives i.e. N-substituted indole based chalcones (12a-g) and N-substituted indole based hydrazide-hydrazones (18a-g, 19a-f, 21 a-g) were synthesized. The synthesized compounds were characterized by 1H NMR, 13C NMR, Mass and FT-IR spectral data. Further these derivatives were evaluated for their antimicrobial potential against Escherichia coli, Bacillus subtilis, Pseudomonas putida and Candida viswanathii, and antileishmanial potential against promastigotes of Leishmania donovani. Compounds 18b, 18d and 19d exhibited significant activity with an IC50 of 0.19 ± 0.03 µM, 0.14 ± 0.02 µM and 0.16 ± 0.06 µM against B. subtilis which was comparable to chloramphenicol (IC50 of 0.25 ± 0.03 µM). Compounds 12b and 12c exhibited an IC50 of 24.2 ± 3.5 µM and 21.5 ± 2.1 µM in the antileishmanial assay. Binding interactions of indole based hydrazide-hydrazones were studied with nitric oxide synthase in silico in order to understand the structural features responsible for activity.


Assuntos
Antibacterianos/farmacologia , Antifúngicos/farmacologia , Antiprotozoários/farmacologia , Indóis/farmacologia , Antibacterianos/síntese química , Antibacterianos/química , Antifúngicos/síntese química , Antifúngicos/química , Antiprotozoários/síntese química , Antiprotozoários/química , Bacillus subtilis/efeitos dos fármacos , Candida/efeitos dos fármacos , Relação Dose-Resposta a Droga , Escherichia coli/efeitos dos fármacos , Indóis/síntese química , Indóis/química , Leishmania donovani/efeitos dos fármacos , Testes de Sensibilidade Microbiana , Estrutura Molecular , Testes de Sensibilidade Parasitária , Pseudomonas putida/efeitos dos fármacos , Relação Estrutura-Atividade
2.
Bioorg Chem ; 99: 103629, 2020 06.
Artigo em Inglês | MEDLINE | ID: mdl-32272367

RESUMO

We present here-in the molecular design and chemical synthesis of a novel series of diindoloazepinone derivatives as DNA minor groove binding agents with selective topoisomerase I inhibition. The in vitro cytotoxicity of the synthesized compounds was evaluated against four human cancer cell lines including DU143, HEPG2, RKO and A549 in addition to non-cancerous immortalized human embryonic kidney cells (HEK-293). Compound 11 showed significant cytotoxicity against all the four human cancer cell lines with IC50 values ranging from 4.2 to 6.59 µM. 11 was also found to display 13-fold selective cytotoxicity towards A549 cancerous cells compared to the non-cancerous cell lines (HEK-293). The decatenation, DNA relaxation and intercalation assays revealed that the investigational compounds 10 and 11 act as highly selective inhibitors of Topo-I with DNA minor groove binding ability which was also supported by the results obtained from circular dichroism (CD), UV-visible spectroscopy and viscosity studies. Apoptosis induced by the lead 11 was observed using morphological observations, AO/EB and DAPI staining procedures. Further, dose-dependent increase in the depolarization of mitochondrial membrane was also observed through JC-1 staining. Annexin V-FITC/PI assay confirmed that 11 induced early apoptosis. Additionally, cell cycle analysis indicated that the cells were arrested at sub-G1 phase. Gratifyingly, in silico studies demonstrated promising interactions of 11 with the DNA and Topo I, thus supporting their potential DNA minor groove binding property with relatively selective Topo I inhibition compared to Topo II.


Assuntos
Antineoplásicos/farmacologia , Azepinas/farmacologia , DNA Topoisomerases Tipo I/metabolismo , DNA de Neoplasias/efeitos dos fármacos , Indóis/farmacologia , Simulação de Acoplamento Molecular , Inibidores da Topoisomerase I/farmacologia , Antineoplásicos/síntese química , Antineoplásicos/química , Apoptose/efeitos dos fármacos , Azepinas/síntese química , Azepinas/química , Sítios de Ligação/efeitos dos fármacos , Proliferação de Células/efeitos dos fármacos , Sobrevivência Celular/efeitos dos fármacos , Células Cultivadas , Relação Dose-Resposta a Droga , Desenho de Fármacos , Ensaios de Seleção de Medicamentos Antitumorais , Humanos , Indóis/síntese química , Indóis/química , Estrutura Molecular , Relação Estrutura-Atividade , Inibidores da Topoisomerase I/síntese química , Inibidores da Topoisomerase I/química
3.
Nanomedicine ; 24: 102147, 2020 02.
Artigo em Inglês | MEDLINE | ID: mdl-31884040

RESUMO

Mycophenolic acid (MPA) has promising anticancer properties; however, it has limited clinical applications in vivo due to hydrophobic nature, high first-pass metabolism, lack of targeting, etc. These associated problems could be addressed by developing a suitable delivery vehicle, inhibiting the first-pass metabolism and additive/synergistic pharmacodynamic effect. Thus, MPA loaded highly stable lipid polymer hybrid nanoparticles (LPNs) were developed and investigated with the combination of quercetin (QC), a CYP 450 inhibitor cum anticancer. LPNs of MPA and QC (size; 136 ±â€¯12 and 176 ±â€¯35 nm, respectively) demonstrated higher cellular uptake and cytotoxicity of combination therapy (MPA-LPN + QC-LPN) compared to individual congeners in MCF-7 cells. In vivo pharmacokinetics demonstrated 2.17 fold higher T1/2 value and significantly higher pharmacodynamic activity in case of combination therapy compared to free MPA. In nutshell, the combinatory therapeutic regimen of MPA and QC could be a promising approach in improved breast cancer management.


Assuntos
Lipídeos/química , Ácido Micofenólico/química , Nanopartículas/química , Polímeros/química , Quercetina/química , Animais , Antioxidantes/química , Apoptose/efeitos dos fármacos , Neoplasias da Mama/tratamento farmacológico , Sobrevivência Celular/efeitos dos fármacos , Sistemas de Liberação de Medicamentos/métodos , Feminino , Humanos , Células MCF-7 , Ácido Micofenólico/uso terapêutico , Quercetina/uso terapêutico , Espectroscopia de Infravermelho com Transformada de Fourier
4.
Chirality ; 28(4): 313-8, 2016 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-26821612

RESUMO

A biocatalytic route for the synthesis of a potential ß-blocker, (S)-moprolol is reported here. Enantiopure synthesis of moprolol is mainly dependent on the chiral intermediate, 3-(2-methoxyphenoxy)-propane-1,2-diol. Various commercial lipases were screened for the enantioselective resolution of (RS)-3-(2-methoxyphenoxy)propane-1,2-diol to produce the desired enantiomer. Among them, Aspergillus niger lipase (ANL) was selected on the basis of both stereo- and regioselectivity. The optimized values of various reaction parameters were determined such as enzyme (15 mg/mL), substrate concentration (10 mM), organic solvent (toluene), reaction temperature (30 °C), and time (18 h).The optimized conditions led to achieving >49% yield with high enantiomeric excess of (S)-3-(2-methoxyphenoxy)propane-1,2-diol. The lipase-mediated catalysis showed regioselective acylation with dual stereoselectivity. Further, the enantiopure intermediate was used for the synthesis of (S)-moprolol, which afforded the desired ß-blocker.


Assuntos
Antagonistas Adrenérgicos beta/química , Lipase/química , Fenoxipropanolaminas/síntese química , Acilação , Antagonistas Adrenérgicos beta/metabolismo , Biocatálise , Catálise , Lipase/metabolismo , Propanóis/química , Estereoisomerismo
5.
World J Microbiol Biotechnol ; 32(8): 127, 2016 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-27339308

RESUMO

Shikimic acid has various pharmaceutical and industrial applications. It is the sole chemical building block for the antiviral drug oseltamivir (Tamiflu(®)) and one of the potent pharmaceutical intermediates with three chiral centres. Here we report a modified strain of Bacillus megaterium with aroK (shikimate kinase) knock out to block the aromatic biosynthetic pathway downstream of shikimic acid. Homologous recombination based gene disruption approach was used for generating aroK knock out mutant of B. megaterium. Shake flask cultivation showed shikimic acid yield of 2.98 g/L which is ~6 times more than the wild type (0.53 g/L). Furthermore, the shikimate kinase activity was assayed and it was 32 % of the wild type. Effect of various carbon sources on the production of shikimic acid was studied and fructose (4 %, w/v) was found to yield maximum shikimic acid (4.94 g/L). The kinetics of growth and shikimic acid production by aroK knockout mutant was studied in 10 L bioreactor and the yield of shikimic acid had increased to 6 g/L which is ~12 fold higher over the wild type. It is evident from the results that aroK gene disruption had an immense effect in enhancing the shikimic acid production.


Assuntos
Bacillus megaterium/crescimento & desenvolvimento , Fosfotransferases (Aceptor do Grupo Álcool)/genética , Ácido Chiquímico/metabolismo , Bacillus megaterium/enzimologia , Bacillus megaterium/genética , Proteínas de Bactérias/genética , Proteínas de Bactérias/metabolismo , Técnicas de Cultura Celular por Lotes/métodos , Colchicina/análogos & derivados , Fermentação , Frutose/metabolismo , Técnicas de Inativação de Genes , Modelos Moleculares , Simulação de Acoplamento Molecular , Fosfotransferases (Aceptor do Grupo Álcool)/metabolismo
6.
Microb Cell Fact ; 14: 69, 2015 May 17.
Artigo em Inglês | MEDLINE | ID: mdl-25981549

RESUMO

BACKGROUND: Shikimic acid, the sole chemical building block for the antiviral drug oseltamivir (Tamiflu®), is one of the potent pharmaceutical intermediates with three chiral centers. Here we report a metabolically engineered recombinant Bacillus megaterium strain with aroE (shikimate dehydrogenase) overexpression for the production of shikimic acid. RESULTS: In a 7 L bioreactor, 4.2 g/L shikimic acid was obtained using the recombinant strain over 0.53 g/L with the wild type. The enhancement of total shikimate dehydrogenase activity was 2.13-fold higher than the wild type. Maximum yield of shikimic acid (12.54 g/L) was obtained with fructose as carbon source. It was isolated from the fermentation broth using amberlite IRA-400 resin and 89% purity of the product was achieved. CONCLUSION: This will add up a new organism in the armory for the fermentation based production which is better over plant based extraction and chemical synthesis of shikimic acid.


Assuntos
Oxirredutases do Álcool/química , Proteínas de Bactérias/química , Ácido Chiquímico/química , Bacillus megaterium , Proteínas de Bactérias/genética , Fermentação , Modelos Moleculares , Simulação de Acoplamento Molecular
7.
Chirality ; 27(6): 382-91, 2015 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-25977108

RESUMO

A new chemoenzymatic route is reported to synthesize acebutolol, a selective ß1 adrenergic receptor blocking agent in enantiopure (R and S) forms. The enzymatic kinetic resolution strategy was used to synthesize enantiopure intermediates (R)- and (S)-N-(3-acetyl-4-(3-chloro-2-hydroxypropoxy)phenyl)butyramide from the corresponding racemic alcohols. The results showed that out of eleven commercially available lipase preparations, two enzyme preparations (Lipase A, Candida antarctica, CLEA [CAL CLEA] and Candida rugosa lipase, 62316 [CRL 62316]) act in enantioselective manner. Under optimized conditions the enantiomeric excess of both (R)- and (S)-N-(3-acetyl-4-(3-chloro-2-hydroxypropoxy)phenyl)butyramide were 99.9 and 96.8%, respectively. N-alkylation of both the (R) and (S) intermediates with isopropylamine gave enantiomerically pure (R and S)- acebutolol with a yield 68 and 72%, respectively. This study suggests a high yielding, easy and environmentally green approach to synthesize enantiopure acebutolol.


Assuntos
Acebutolol/síntese química , Antagonistas de Receptores Adrenérgicos beta 1/síntese química , Biocatálise , Modelos Biológicos , Estrutura Molecular , Estereoisomerismo , Especificidade por Substrato
8.
Phytochem Anal ; 26(2): 161-70, 2015.
Artigo em Inglês | MEDLINE | ID: mdl-25515916

RESUMO

INTRODUCTION: Potentilla fulgens is a commonly used folk medicine by natives of northeast India, Nepal and Bhutan and is rich in polyphenolic and triterpene constituents. OBJECTIVE: To identify chemomarkers in the roots of P. fulgens by an interplay of (13)C-NMR, matrix-assisted laser desorption/ionisation with time-of-flight (MALDI/TOF) MS, electrospray ionisation (ESI) MS/MS and HPLC/UV. MATERIAL AND METHODS: The (13)C-NMR spectrum of crude methanolic extract was recorded in deuterated dimethyl sulphoxide. For MALDI/TOF/MS analysis, 2,5-dihydroxybenzoic acid was used as the matrix. For determination of chemical constituents, two independent simple isocratic HPLC/UV methods for monomeric/oligomeric flavanols and triterpene acids were developed and validated. RESULTS: The (13)C-NMR spectrum of the methanolic extract indicated the presence of B-type oligomeric polyphenolics containing mainly epicatechin/catechin (epicat/cat) and epiafzelechin/afzelechin (epiafz/afz) as the monomeric units. Several isobaric monomeric and oligomeric flavanols and triterpenoids were tentatively identified by MALDI/TOF/MS and ESI/MS/MS. Fourteen compounds (four monomeric and five dimeric flavanols and five triterpene acids) were isolated using repeated column chromatography and semi-preparative HPLC, and were quantitated using HPLC/UV. CONCLUSION: It is evident from these analyses that roots of P. fulgens contain flavans, including oligomeric flavanols, as major constituents followed by triterpene acids. The methods described can be applied to other Potentilla species to identify their constituents.


Assuntos
Flavanonas/isolamento & purificação , Extratos Vegetais/química , Raízes de Plantas/química , Potentilla/química , Triterpenos/isolamento & purificação , Cromatografia Líquida de Alta Pressão/métodos , Flavanonas/química , Gentisatos , Espectroscopia de Ressonância Magnética/métodos , Medicina Tradicional do Leste Asiático , Extratos Vegetais/isolamento & purificação , Espectrometria de Massas por Ionização por Electrospray/métodos , Espectrometria de Massas por Ionização e Dessorção a Laser Assistida por Matriz/métodos , Espectrometria de Massas em Tandem/métodos , Triterpenos/química
9.
Mol Pharm ; 10(6): 2416-25, 2013 Jun 03.
Artigo em Inglês | MEDLINE | ID: mdl-23597269

RESUMO

The present study reports the development, characterization, and evaluation of novel polyelectrolytes stabilized lipoplexes as a nonviral vector for gene delivery. In order to achieve the advantage of both DOTAP (1,2-dioleoyl-3-trimethylammonium propane) and PEI (high transfection efficiency) a system was hypothesized in which DOTAP/phosphatidyl choline (PC) lipoplexes were electrostatically coated with anionic poly(acrylic acid) (PAA) and cationic polyethylenimine (PEI) alternatively to finally shape a robust structure PEI-PAA-DOTAP/PC-lipoplexes (nanoplexes). The nanoplexes were found to have size of 242.6 ± 9.4 nm and zeta potential of +23.1 ± 1.5 mV. Following development nanoplexes were evaluated for cellular uptake, nuclear colocalization, transfection efficiency, and cellular toxicity in MCF-7, HeLa, and HEK-293 cell lines. In support of our hypothesis nanoplexes exhibited higher uptake and nuclear colocalization in comparison with DOTAP/PC, DOTAP/DOPE lipoplexes, and PEI polyplexes. Nanoplexes also exhibited 50-80, 11-12, 6-7, and 5-6 fold higher transfection efficiency in comparison with DOTAP/PC-lipoplexes, DOTAP/DOPE-lipoplexes, PEI-polyplexes, and lipofectamine, respectively, and significantly lower toxicity in comparison with DOTAP/PC, DOTAP/DOPE lipoplexes, PEI polyplexes, and commercial lipofectamine.


Assuntos
Vetores Genéticos/química , Polímeros/química , Transfecção/métodos , Resinas Acrílicas/química , Linhagem Celular , Linhagem Celular Tumoral , Ácidos Graxos Monoinsaturados/química , Técnicas de Transferência de Genes , Células HeLa , Humanos , Lipídeos/química , Fosfatidilcolinas/química , Fosfatidiletanolaminas/química , Polietilenoimina/química , Compostos de Amônio Quaternário/química
10.
Comput Biol Chem ; 102: 107807, 2023 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-36587565

RESUMO

The current study reports synthesis of 2-aminoquinolines and 1-aminoisoquinolines derivatives and their characterization. Further, in vitro studies were conducted to determine antimicrobial activities. Compound 3 h showed maximum activity against B. subtilis (IC50: 0.10±0.02 µM) and E. coli (IC50: 0.13±0.01 µM) whereas compound 3i showed higher antimicrobial activity against E. coli (IC50: 0.11±0.01) and C. viswanathii (IC50: 0.10±0.05 µM). Safety profiles of the most potent derivatives were evaluated utilizing cell viability assay using RAW 264.7 and HeLa cell lines and in vitro hemolytic assay was carried out freshly isolated RBC from healthy rat. Furthermore, in silico studies, like molecular docking, binding free energy calculations and ADME predictions were done to get the best lead candidates. Additionally, molecular dynamic simulation for 100 ns was performed to know stability of protein and ligand complex. The active compounds were found to be non-toxic and non-hemolytic and hold great promise to become newer antimicrobial agents.


Assuntos
Anti-Infecciosos , Antineoplásicos , Humanos , Ratos , Animais , Simulação de Acoplamento Molecular , Relação Estrutura-Atividade , Antineoplásicos/química , Células HeLa , Aminoquinolinas , Escherichia coli , Anti-Infecciosos/farmacologia , Estrutura Molecular
11.
3 Biotech ; 12(10): 264, 2022 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-36082360

RESUMO

Arginine, a conditionally essential amino acid, plays a crucial role in several metabolic and signalling pathways. Arginine metabolism in the body can be significantly increased under stress or during certain pathological conditions. Depletion of circulating arginine by administering arginine-hydrolysing enzyme has been shown to mitigate varied pathophysiological conditions ranging from cancer, inflammatory conditions, and microbial infection. This review provides an overview of such intriguing expanse of potential applications of recombinant human arginase 1 for different pathological conditions and its status of development.

12.
Bioresour Bioprocess ; 8(1): 126, 2021 Dec 16.
Artigo em Inglês | MEDLINE | ID: mdl-38650298

RESUMO

This study reports the isolation and partial purification of transaminase from the wild species of Bacillus licheniformis. Semi-purified transaminase was immobilized on copper nanoflowers (NFs) synthesized through sonochemical method and explored it as a nanobiocatalyst. The conditions for the synthesis of transaminase NFs [TA@Cu3(PO4)2NF] were optimized. Synthesized NFs revealed the protein loading and activity yield-60 ± 5% and 70 ± 5%, respectively. The surface morphology of the synthesized hybrid NFs was examined by scanning electron microscopy (SEM) and transmission electron microscopy (TEM), which revealed the average size to be around 1 ± 0.5 µm. Fourier-transform infrared (FTIR) was used to confirm the presence of the enzyme inside the immobilized matrix. In addition, circular dichroism and florescence spectroscopy were also used to confirm the integrity of the secondary and tertiary structures of the protein in the immobilized material. The transaminase hybrid NFs exhibited enhanced kinetic properties and stability over the free enzyme and revealed high reusability. Furthermore, the potential application of the immobilized transaminase hybrid NFs was demonstrated in the resolution of racemic α-methyl benzylamine.

13.
3 Biotech ; 11(5): 226, 2021 May.
Artigo em Inglês | MEDLINE | ID: mdl-33968571

RESUMO

Recombinant human interferon-ß (rhIFN-ß) is therapeutically important and new commercially viable approaches are needed for its increased production. In this study, a codon-optimized gene encoding for rhIFN-ß(C17S) protein was designed and expressed in E. coli SE1. As a first step of medium optimization, growth of E. coli as a function of different media components was studied. Subsequently, to optimize the media composition, a response surface methodology (RSM) was used. Our results show that optimized medium (15.0 g/L tryptone, 12.3 g/L meat extract, 1.0 g/L MgSO4 and 0.5 g/L thiamine along with minimal medium) obtained in this study provide better growth of recombinant cells and the expression level of recombinant protein was ~ 1.7-fold more than Luria-Bertani medium. The optimized medium may be utilized for the large-scale production of rhIFN-ß.

14.
Ultrasound Med Biol ; 47(3): 777-786, 2021 03.
Artigo em Inglês | MEDLINE | ID: mdl-33334625

RESUMO

Described here is the modeling used to improve the mycophenolic acid (MPA) titer from Penicillium brevicompactum using central composite design and a comparatively newer, data-centric approach method k-nearest-neighbor algorithm. The two models for enhancing MPA production using P. brevicompactum were compared with respect to ultrasonic stimulation. During the ultrasonic treatment, we studied different independent factors such as ultrasound power, irradiation duration, treatment frequency and duty cycle to determine their ability to enhance the MPA titer value. The optimized factors such as a treatment time of 10 min (50% duty cycles) with a 12-h interlude at fixed ultrasonic power and frequency (200 W, 40 kHz) were used for ultrasonic treatment of a mycelial culture from the 2nd to 10th day of fermentation. Thus the production of MPA was improved 1.64-fold under the optimized sonication conditions compared with the non-sonicated batch fermentation (non-optimized conditions).


Assuntos
Fermentação , Aprendizado de Máquina , Modelos Teóricos , Ácido Micofenólico/metabolismo , Penicillium/metabolismo , Sonicação
15.
Artigo em Inglês | MEDLINE | ID: mdl-32612988

RESUMO

The present study explores the influence of mycophenolic acid (MPA) in combination therapy with quercetin (QC) (impeding MPA metabolic rate) delivered using the liposomal nanoparticles (LNPs). Mycophenolic acid liposome nanoparticles (MPA-LNPs) and quercetin liposome nanoparticles (QC-LNPs) were individually prepared and comprehensively characterized. The size of prepared MPA-LNPs and QC-LNPs were found to be 183 ± 13 and 157 ± 09.8, respectively. The in vitro studies revealed the higher cellular uptake and cytotoxicity of combined therapy (MPA-LNPs + QC-LNPs) compared to individual ones. Moreover pharmacokinetics studies in female SD-rat shown higher T 1 / 2 value (1.94 fold) of combined therapy compared to MPA. Furthermore, in vivo anticancer activity in combination of MPA-LNPs and QC-LNPs was also significantly higher related to other treatments groups. The combination therapy of liposomes revealed the new therapeutic approach for the treatment of breast cancer.

16.
J Biosci Bioeng ; 127(2): 129-137, 2019 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-30143336

RESUMO

Arginine deiminase (ADI) from Pseudomonas putida was purified using ammonium sulphate precipitation, anion exchange and hydrophobic interaction chromatography. Influence of various chemical compounds (metal ions, reducing agents, sulphydryl agents, and surfactants) on the catalytic activity of ADI was determined was evaluated on the purified ADI. The enzyme displayed high sensitivity towards thiol binding metal ions, chemicals acting on sulfhydryl group, and most of the surfactants. Substrate specificity studies exhibited that among the eight substrate analogues tested, canavanine had the highest affinity for ADI, followed by d-arginine and guanidine. Canavanine decreased the ADI activity up to 50% at its lowest concentration tested (10 mM), while d-arginine decreased the ADI activity up to ∼4% at its highest tested concentration (200 mM). Differential affinities of the structural analogues of arginine towards ADI were further studied by molecular modeling methods, which included homology modeling, molecular docking and molecular dynamic simulations. The molecular docking studies revealed the critical importance of residues Arg 243, Asp 166, Asp 280, Gly 299 and His 278. RMSDs for protein-ligand complexes were within a range of 1-3 Å, suggesting that the complexes were stable throughout the molecular dynamic simulation. The formation of strong hydrogen bonds by residues Asn 160, Asp166, Arg 185, Arg243, Asp280 and Gly 399 in l-arginine were preserved in the case of d-arginine and canavanine and was responsible for higher affinity towards ADI. Calculations of the substrate binding energies revealed that binding energies ΔGbind and ΔGvdw play a critical role for the differential affinities of various substrate analogues towards P. putida ADI.


Assuntos
Arginina/análogos & derivados , Arginina/metabolismo , Hidrolases/química , Hidrolases/isolamento & purificação , Pseudomonas putida/enzimologia , Domínio Catalítico , Guanidina/metabolismo , Hidrolases/metabolismo , Modelos Moleculares , Simulação de Acoplamento Molecular , Ligação Proteica , Estrutura Quaternária de Proteína , Estrutura Secundária de Proteína , Pseudomonas aeruginosa/enzimologia , Pseudomonas aeruginosa/metabolismo , Pseudomonas putida/metabolismo , Especificidade por Substrato
17.
Ultrasonics ; 98: 72-81, 2019 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-31207474

RESUMO

The ultrasonication-mediated cell disruption of recombinant E. coli was modeled using three machine learning techniques namely Multiple linear regression (MLR), Multi-layer perceptron (MLP) and Sequential minimal optimization (SMO). The four attributes were cellmass concentration (g/L), acoustic power (A), duty cycle (%) and treatment time of sonication (min). For the three responses (nitrilase, total protein release and cell disruption) MLP model was found to be at par with RSM model in terms of generalization as well as prediction capability. Nitrilase release was significantly influenced by the cellmass concentration so was in case of total protein release. Fraction of cells disrupted was heavily influenced by acoustic power and sonication time. Almost 32 U/mL nitrilase could be released for 300 g/L cellmass concentration when sonicated at 225 W for 1 min with 20% duty cycle.


Assuntos
Aminoidrolases/metabolismo , Escherichia coli/enzimologia , Aprendizado de Máquina , Sonicação , Redes Neurais de Computação , Fatores de Tempo
18.
Chembiochem ; 9(14): 2238-43, 2008 Sep 22.
Artigo em Inglês | MEDLINE | ID: mdl-18756549

RESUMO

Directed evolution has paved the way to a new era of protein and nucleic acid molecules with improved and enhanced properties. The utmost important component of directed evolution is random mutations in a defined DNA sequence. The utility of random chemical mutagenesis in directed evolution studies is dwindling due to the inherent flaws with whole-organism mutagenesis and the in vitro approach. Here, we report a novel Dual Approach to Random Chemical Mutagenesis (DuARCheM) to introduce random mutations in a defined DNA fragment. DuARCheM involves in vivo chemical mutagenesis and in vitro genetic manipulations. The resulting library revealed an accumulation of mutations in its members. These results imply that the parent mutation is carried in the further generations within the same library. This method might help to change random chemical mutagenesis because the combination of in vivo and in vitro approaches mimics the amplification and mutation that is performed by PCR-based mutagenesis, and at the same time the mutations are confined to the desired gene. Moreover, the mutagen pressure is greater in chemical mutagenesis than in a Taq-polymerase-based error-prone system. Concomitant amplification and mutation in the DuARCheM method leads to a better spectrum of mutants because the plasmid construct is exponentially amplified in the presence of mutagen pressure, unlike in the in vitro chemical mutagenesis system in which the template molecule does not replicate. This work is able to nullify all the disadvantages that are associated with random chemical mutagenesis, and could make random chemical mutagenesis an indispensable tool in directed evolution studies.


Assuntos
DNA/genética , Evolução Molecular Direcionada/métodos , Mutagênese/efeitos dos fármacos , Mutagênicos/toxicidade , Mutação/genética , Sequência de Bases , Metanossulfonato de Etila/toxicidade , Hidrólise , Incubadoras , Lipase/genética , Lipase/metabolismo , Pseudomonas aeruginosa/enzimologia , Fatores de Tempo
19.
Mol Biotechnol ; 40(3): 217-23, 2008 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-18543126

RESUMO

The present century has witnessed an unprecedented rise in genome sequences owing to various genome-sequencing programs. However, the same has not been replicated with cDNA or expressed sequence tags (ESTs). Hence, prediction of protein coding sequence of genes from this enormous collection of genomic sequences presents a significant challenge. While robust high throughput methods of cloning and expression could be used to meet protein requirements, lack of intron information creates a bottleneck. Computational programs designed for recognizing intron-exon boundaries for a particular organism or group of organisms have their own limitations. Keeping this in view, we describe here a method for construction of intron-less gene from genomic DNA in the absence of cDNA/EST information and organism-specific gene prediction program. The method outlined is a sequential application of bioinformatics to predict correct intron-exon boundaries and splicing by overlap extension PCR for spliced gene synthesis. The gene construct so obtained can then be cloned for protein expression. The method is simple and can be used for any eukaryotic gene expression.


Assuntos
Aspergillus/genética , Clonagem Molecular/métodos , DNA Fúngico/genética , Regulação Fúngica da Expressão Gênica , Genes Fúngicos , Genoma de Planta/genética , 6-Fitase/genética , Aspergillus/enzimologia , Íntrons/genética , Dados de Sequência Molecular , Filogenia , Pichia/genética , Software , Transformação Genética
20.
Bioresour Technol ; 99(18): 8765-70, 2008 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-18513958

RESUMO

Fungal fermentation is very complex in nature due to its nonlinear relationship with the time, especially in batch culture. Growth and production of carbonyl reductase by Geotrichum candidum NCIM 980 have been studied in a laboratory scale stirred tank bioreactor at different pH (uncontrolled and controlled), agitation, aeration and dissolved oxygen concentration. The yield of the process has been calculated in terms of glucose consumed. Initial studies showed that fermenter grown cells have more than 15 times higher activity than that of the shake flask grown cells. The medium pH was found to have unspecific but significant influence on the enzyme productivity. However, at controlled pH 5.5 the specific enzyme activity was highest (306U/mg). Higher agitation had detrimental effect on the cell mass production. Dissolved oxygen concentration was maintained by automatic control of the agitation speed at an aeration rate of 0.6 volume per volume per minute (vvm). Optimization of glucose concentration yielded 21g/l cell mass with and 9.77 x 10(3)U carbonyl reductase activity/g glucose. Adaptation of different strategies for glucose feeding in the fermenter broth was helpful in increasing the process yield. Feeding of glucose at a continuous rate after 3h of cultivation yielded 0.97g cell mass/g glucose corresponding to 29.1g/l cell mass. Volumetric oxygen transfer coefficient (K(L)a) increased with the increasing of agitation rate.


Assuntos
Oxirredutases do Álcool/biossíntese , Reatores Biológicos , Geotrichum/enzimologia , Laboratórios , Ar , Meios de Cultura , Geotrichum/efeitos dos fármacos , Geotrichum/crescimento & desenvolvimento , Glucose/farmacologia , Concentração de Íons de Hidrogênio/efeitos dos fármacos , Oxigênio/farmacologia , Solubilidade/efeitos dos fármacos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA