Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 74
Filtrar
1.
Biomacromolecules ; 25(4): 2390-2398, 2024 Apr 08.
Artigo em Inglês | MEDLINE | ID: mdl-38478587

RESUMO

Thermoresponsive elastin-like peptides (ELPs) have been extensively investigated in biotechnology and medicine, but little attention has been paid to the process by which coacervation causes ELP-decorated particles to aggregate. Using gold nanoparticles (AuNPs) functionalized with a cysteine-terminated 96-repeat of the VPGVG sequence (V96-Cys), we show that the size of the clusters that reversibly form above the ELP transition temperature can be finely controlled in the 250 to 930 nm range by specifying the concentration of free V96-Cys in solution and using AuNPs of different sizes. We further find that the localized surface plasmon resonance peak of the embedded AuNPs progressively red-shifts with cluster size, likely due to an increase in particle-particle contacts. We exploit this fine control over size to homogeneously load precise amounts of the dye Nile Red and the antibiotic Tetracycline into clusters of different hydrodynamic diameters and deliver cargos near-quantitatively by deconstructing the aggregates below the ELP transition temperature. Beyond establishing a key role for free ELPs in the agglomeration of ELP-functionalized particles, our results provide a path for the thermally controlled delivery of precise quantities of molecular cargo. This capability might prove useful in combination photothermal therapies and theranostic applications, and to trigger spatially and temporally uniform responses from biological, electronic, or optical systems.


Assuntos
Ouro , Nanopartículas Metálicas , Peptídeos/química , Ressonância de Plasmônio de Superfície , Elastina/química , Temperatura
2.
Soft Matter ; 20(8): 1935-1942, 2024 Feb 21.
Artigo em Inglês | MEDLINE | ID: mdl-38323470

RESUMO

Although a broad range of ligand-functionalized nanoparticles and physico-chemical triggers have been exploited to create stimuli-responsive colloidal systems, little attention has been paid to the reversible assembly of unmodified nanoparticles with non-covalently bound proteins. Previously, we reported that a derivative of green fluorescent protein engineered with oppositely located silica-binding peptides mediates the repeated assembly and disassembly of 10-nm silica nanoparticles when pH is toggled between 7.5 and 8.5. We captured the subtle interplay between interparticle electrostatic repulsion and their protein-mediated short-range attraction with a multiscale model energetically benchmarked to collective system behavior captured by scattering experiments. Here, we show that both solution conditions (pH and ionic strength) and protein engineering (sequence and position of engineered silica-binding peptides) provide pathways for reversible control over growth and fragmentation, leading to clusters ranging in size from 25 nm protein-coated particles to micrometer-size aggregate. We further find that the higher electrolyte environment associated with successive cycles of base addition eventually eliminates reversibility. Our model accurately predicts these multiple length scales phenomena. The underpinning concepts provide design principles for the dynamic control of other protein- and particle-based nanocomposites.


Assuntos
Proteínas de Transporte , Nanopartículas , Peptídeos , Dióxido de Silício
3.
Chem Rev ; 122(24): 17397-17478, 2022 12 28.
Artigo em Inglês | MEDLINE | ID: mdl-36260695

RESUMO

Hierarchical materials that exhibit order over multiple length scales are ubiquitous in nature. Because hierarchy gives rise to unique properties and functions, many have sought inspiration from nature when designing and fabricating hierarchical matter. More and more, however, nature's own high-information content building blocks, proteins, peptides, and peptidomimetics, are being coopted to build hierarchy because the information that determines structure, function, and interfacial interactions can be readily encoded in these versatile macromolecules. Here, we take stock of recent progress in the rational design and characterization of hierarchical materials produced from high-information content blocks with a focus on stimuli-responsive and "smart" architectures. We also review advances in the use of computational simulations and data-driven predictions to shed light on how the side chain chemistry and conformational flexibility of macromolecular blocks drive the emergence of order and the acquisition of hierarchy and also on how ionic, solvent, and surface effects influence the outcomes of assembly. Continued progress in the above areas will ultimately usher in an era where an understanding of designed interactions, surface effects, and solution conditions can be harnessed to achieve predictive materials synthesis across scale and drive emergent phenomena in the self-assembly and reconfiguration of high-information content building blocks.


Assuntos
Peptídeos , Substâncias Macromoleculares/química
4.
Nano Lett ; 21(4): 1636-1642, 2021 02 24.
Artigo em Inglês | MEDLINE | ID: mdl-33555891

RESUMO

The fabrication of ordered architectures that intimately integrate polymer, protein, and inorganic components remains difficult. Two promising building blocks to tackle this challenge are peptoids, peptide mimics capable of self-assembly into well-defined structures, and solid-binding peptides, which offer a biological path to controlled inorganic assembly. Here, we report on the synthesis of 3.3-nm-thick thiol-reactive peptoid nanosheets from equimolar mixtures of unmodified and maleimide-derivatized versions of the Nbpe6Nce6 oligomer, optimize the location of engineered cysteine residues in silica-binding derivatives of superfolder green fluorescent protein for maleimide conjugation, and react the two components to form protein-peptoid hybrids exhibiting partial or uniform protein coverage on both of their sides. Using 10 nm silica nanoparticles, we trigger the stacking of these 2D structures into a multilayered material composed of alternating peptoid, protein, and organic layers. This simple and modular approach to hierarchical hybrid synthesis should prove useful in bioimaging and photocatalysis applications.


Assuntos
Nanopartículas , Peptoides , Proteínas de Transporte , Peptídeos
5.
Angew Chem Int Ed Engl ; 61(14): e202201980, 2022 03 28.
Artigo em Inglês | MEDLINE | ID: mdl-35167709

RESUMO

While bio-inspired synthesis offers great potential for controlling nucleation and growth of inorganic particles, precisely tuning biomolecule-particle interactions is a long-standing challenge. Herein, we used variations in peptoid sequence to manipulate peptoid-Au interactions, leading to the synthesis of concave five-fold twinned, five-pointed Au nanostars via a process of repeated particle attachment and facet stabilization. Ex situ and liquid-phase TEM observations show that a balance between particle attachment biased to occur near the star points, preferential growth along the [100] direction, and stabilization of (111) facets is critical to forming star-shaped particles. Molecular simulations predict that interaction strengths between peptoids and distinct Au facets differ significantly and thus can alter attachment kinetics and surface energies to form the stars. This work provides new insights into how sequence-defined ligands affect particle growth to regulate crystal morphology.


Assuntos
Peptoides , Peptoides/química
6.
J Am Chem Soc ; 142(5): 2355-2363, 2020 02 05.
Artigo em Inglês | MEDLINE | ID: mdl-31934768

RESUMO

Solid-binding peptides (SBPs) recognizing inorganic and synthetic interfaces have enabled a broad range of materials science applications and hold promise as adhesive or morphogenetic control units that can be genetically encoded within desirable or designed protein frameworks. To date, the underlying relationships governing both SBP-surface and SBP-SBP interactions and how they give rise to different adsorption mechanisms remain unclear. Here, we combine protein engineering, surface plasmon resonance characterization, and molecular dynamics (MD) simulations initiated from Rosetta predictions to gain insights on the interplay of amino acid composition, structure, self-association, and adhesion modality in a panel of variants of the Car9 silica-binding peptide (DSARGFKKPGKR) fused to the C-terminus of superfolder green fluorescent protein (sfGFP). Analysis of kinetics, energetics, and MD-predicted structures shows that the high-affinity binding of Car9 to the silanol-rich surface of silica is dominated by electrostatic contributions and a spectrum of several persistent interactions that, along with a high surface population of bound molecules, promote cooperative interactions between neighboring SBPs and higher order structure formation. Transition from cooperative to Langmuir adhesion in sfGFP-Car9 variants occurs in concert with a reduction of stable surface interactions and self-association, as confirmed by atomic force microscopy imaging of proteins exhibiting the two different binding behaviors. We discuss the implications of these results for the de novo design of SBP-surface binding systems.

7.
Langmuir ; 36(29): 8503-8510, 2020 07 28.
Artigo em Inglês | MEDLINE | ID: mdl-32614593

RESUMO

The biomimetic route to inorganic synthesis presents an opportunity to produce complex materials with superior properties under ambient conditions and from nontoxic precursors. While there has been significant progress in using solid-binding peptides (SBPs), proteins, and organisms to produce a variety of inorganic and hybrid structures, it has been more challenging to understand the interplay of solution conditions and solid-binding peptide (SBP) sequence, structure, and self-association on synthetic outcomes. Here, we show that fusing the Car9 silica-binding peptide-but not the silaffin-derived R5 peptide-to superfolder green fluorescent protein (sfGFP) enhances the ability of micromolar concentrations of protein to induce rapid titania (TiO2) precipitation from acidified solutions of tetrakis(di-lactato)-oxo-titanate (TiBALDH). TiO2 is produced stoichiometrically and although predominantly amorphous, contains nanosized anatase and monoclinic TiO2(B) inclusions. Remarkably, the phase of these nanocrystallites can be tuned from about 80% TiO2(B) to about 65% anatase by using Car9 mutants impaired in their ability to drive the formation of higher-order sfGFP-Car9 oligomers. Our results suggest that the presentation of multiple basic side chains in an extended plane formed by SBP self-association is critical to template the formation of monoclinic crystallites and underscore the subtle influence that single or dual substitutions in dodecameric SBPs can exert on the yield and crystallinity of biomineralized inorganics.


Assuntos
Proteínas de Transporte , Dióxido de Silício , Proteínas Mutantes , Titânio
8.
Protein Expr Purif ; 170: 105608, 2020 06.
Artigo em Inglês | MEDLINE | ID: mdl-32062023

RESUMO

The Car9 affinity tag is a dodecameric silica-binding peptide that can be fused to the N- and C-termini of proteins of interest to enable their rapid and inexpensive purification on underivatized silica in a process that typically relies on l-lysine as an eluent. Here, we show that silica paper spin columns and borosilicate multi-well plates used for plasmid DNA purification are suitable for recovering Car9-tagged proteins with high purity in a workflow compatible with high-throughput experiments. Spin columns typically yield 100 µg of biologically active material that can be recovered in minutes with low concentrations of lysine. Because of their short bed length, spin columns also offer unique advantages, as evidenced by the selective recovery of functional Car9-tagged tobacco etch virus (TEV) protease from a fused and auto-cleaved maltose binding protein (MBP) folding partner that nonspecifically binds to silica in the presence of NaCl. These additional purification modalities should increase the versatility and appeal of the Car9 tag for affinity protein purification.


Assuntos
Cromatografia de Afinidade/métodos , Endopeptidases/isolamento & purificação , Proteínas Ligantes de Maltose/isolamento & purificação , Peptídeos/química , Plasmídeos/metabolismo , Dióxido de Silício/química , Marcadores de Afinidade/química , Cromatografia de Afinidade/instrumentação , Clonagem Molecular , Endopeptidases/genética , Endopeptidases/metabolismo , Escherichia coli/genética , Escherichia coli/metabolismo , Expressão Gênica , Proteínas Ligantes de Maltose/genética , Proteínas Ligantes de Maltose/metabolismo , Peptídeos/metabolismo , Plasmídeos/química , Ligação Proteica , Proteínas Recombinantes de Fusão/genética , Proteínas Recombinantes de Fusão/isolamento & purificação , Proteínas Recombinantes de Fusão/metabolismo , Proteínas Recombinantes/genética , Proteínas Recombinantes/isolamento & purificação , Proteínas Recombinantes/metabolismo , Cloreto de Sódio/química , Coloração e Rotulagem/métodos
9.
Bioconjug Chem ; 30(3): 959-965, 2019 03 20.
Artigo em Inglês | MEDLINE | ID: mdl-30816696

RESUMO

Simple and robust strategies for the noncovalent functionalization of carbon nanostructures with proteins are of considerable interest in hybrid nanomaterials synthesis, part-to-part assembly, and biosensor development. Here, we show that fusion of the Car9 and Car15 carbon-binding peptides to the C-termini of the sfGFP and mCherry fluorescent proteins enables selective labeling of the ends or the sidewalls of single walled carbon nanotubes. By installing a gold-binding peptide or a single cysteine residue in carbon-binding variants of sfGFP, we further produce heterobifunctional solid-binding proteins that support the decoration of nanotubes sidewalls or termini with gold nanoparticles. The approach described here is generic and should prove useful for the controlled assembly of other hybrid materials.


Assuntos
Proteínas de Fluorescência Verde/química , Nanotubos de Carbono/química , Ouro/química , Nanopartículas Metálicas/química , Ligação Proteica
10.
Biotechnol Bioeng ; 116(4): 912-918, 2019 04.
Artigo em Inglês | MEDLINE | ID: mdl-30475397

RESUMO

Blue-absorbing proteorhodopsin (BPR) from marine bacteria is a retinal-bound, light-activated, outwards proton transporter containing seven α-helical transmembrane segments (TMS). It is synthesized as a precursor species (pre-BPR) with a predicted N-terminal signal sequence that is cleaved to yield the mature protein. While optimizing the production of BPR in Escherichia coli to facilitate the construction of bioprotonic devices, we observed significant pre-BPR accumulation in the inner membrane and explored signal sequence requirements and export pathway. We report here that BPR does not rely on the Sec pathway for inner membrane integration, and that although it greatly enhances yields, its signal sequence is not necessary to obtain a functional product. We further show that an unprocessable version of pre-BPR obtained by mutagenesis of the signal peptidase I site exhibits all functional attributes of the wild-type protein and has the advantage of being produced at higher levels. Our results are consistent with the BPR signal sequence being recognized by the signal recognition particle (SRP; a protein that orchestrates the cotranslational biogenesis of inner membrane proteins) and serving as a beneficial "pro" domain rather than a traditional secretory peptide.


Assuntos
Escherichia coli/metabolismo , Rodopsinas Microbianas/metabolismo , Membrana Celular/química , Membrana Celular/genética , Membrana Celular/metabolismo , Escherichia coli/química , Escherichia coli/genética , Expressão Gênica , Concentração de Íons de Hidrogênio , Microbiologia Industrial , Luz , Sinais Direcionadores de Proteínas , Prótons , Rodopsinas Microbianas/química , Rodopsinas Microbianas/genética
11.
Langmuir ; 35(14): 5013-5020, 2019 04 09.
Artigo em Inglês | MEDLINE | ID: mdl-30869906

RESUMO

Combinatorially selected solid-binding peptides (SBPs) provide a versatile route for synthesizing advanced materials and devices, especially when they are installed within structurally or functionally useful protein scaffolds. However, their promise has not been fully realized because we lack a predictive understanding of SBP-material interactions. Thermodynamic and kinetic binding parameters obtained by fitting quartz crystal microbalance and surface plasmon resonance (SPR) data with the Langmuir model whose assumptions are rarely satisfied provide limited information on underpinning molecular interactions. Using SPR, we show here that a technologically useful SBP called Car9 confers proteins to which is fused a sigmoidal adsorption behavior modulated by partner identity, quaternary structure, and ionic strength. We develop a two-step cooperative model that accurately captures the kinetics of silica binding and provides insights into how SBP-SBP interactions, fused scaffold, and solution conditions modulate adsorption. Because cooperative binding can be converted to Langmuir adhesion by mutagenesis, our approach offers a path to identify and to better understand and design practically useful SBPs.


Assuntos
Proteínas de Transporte/química , Dióxido de Silício/química , Adsorção , Modelos Moleculares , Tamanho da Partícula , Ressonância de Plasmônio de Superfície , Propriedades de Superfície
12.
Nature ; 557(7703): 38-39, 2018 05.
Artigo em Inglês | MEDLINE | ID: mdl-29717250
13.
J Am Chem Soc ; 139(11): 3958-3961, 2017 03 22.
Artigo em Inglês | MEDLINE | ID: mdl-28264159

RESUMO

Combining bioorthogonal chemistry with the use of proteins engineered with adhesive and morphogenetic solid-binding peptides is a promising route for synthesizing hybrid materials with the economy and efficiency of living systems. Using optical sensing of chloramphenicol as a proof of concept, we show here that a GFP variant engineered with zinc sulfide and silica-binding peptides on opposite sides of its ß-barrel supports the fabrication of protein-capped ZnS:Mn nanocrystals that exhibit the combined emission signatures of organic and inorganic fluorophores. Conjugation of a chloramphenicol-specific DNA aptamer to the protein shell through strain-promoted azide-alkyne cycloaddition and spontaneous concentration of the resulting nanostructures onto SiO2 particles mediated by the silica-binding sequence enables visual detection of environmentally and clinically relevant concentrations of chloramphenicol through analyte-mediated inner filtering of sub-330 nm excitation light.


Assuntos
Cloranfenicol/química , DNA/química , Proteínas de Fluorescência Verde/química , Manganês/química , Dióxido de Silício/química , Sulfetos/química , Compostos de Zinco/química , Sítios de Ligação , Química Click , Modelos Moleculares , Tamanho da Partícula , Engenharia de Proteínas , Propriedades de Superfície
14.
Protein Expr Purif ; 135: 70-77, 2017 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-28506644

RESUMO

Car9, a dodecapeptide identified by cell surface display for its ability to bind to the edge of carbonaceous materials, also binds to silica with high affinity. The interaction can be disrupted with l-lysine or l-arginine, enabling a broad range of technological applications. Previously, we reported that C-terminal Car9 extensions support efficient protein purification on underivatized silica. Here, we show that the Car9 tag is functional and TEV protease-excisable when fused to the N-termini of target proteins, and that it supports affinity purification under denaturing conditions, albeit with reduced yields. We further demonstrate that capture of Car9-tagged proteins is enhanced on small particle size silica gels with large pores, that the concomitant problem of nonspecific protein adsorption can be solved by lysing cells in the presence of 0.3% Tween 20, and that efficient elution is achieved at reduced l-lysine concentrations under alkaline conditions. An optimized small-scale purification kit incorporating the above features allows Car9-tagged proteins to be inexpensively recovered in minutes with better than 90% purity. The Car9 affinity purification technology should prove valuable for laboratory-scale applications requiring rapid access to milligram-quantities of proteins, and for preparative scale purification schemes where cost and productivity are important factors.


Assuntos
Cromatografia de Afinidade/métodos , Escherichia coli/genética , Oligopeptídeos/genética , Plasmídeos/química , Proteínas Recombinantes de Fusão/isolamento & purificação , Dióxido de Silício/química , beta-Lactamases/isolamento & purificação , Adsorção , Sequência de Aminoácidos , Arginina/química , Clonagem Molecular , Endopeptidases/química , Escherichia coli/metabolismo , Expressão Gênica , Lisina/química , Oligopeptídeos/metabolismo , Plasmídeos/metabolismo , Polissorbatos/química , Proteólise , Proteínas Recombinantes de Fusão/biossíntese , Proteínas Recombinantes de Fusão/genética , Coloração e Rotulagem/métodos , beta-Lactamases/biossíntese , beta-Lactamases/genética
15.
Bioconjug Chem ; 27(10): 2450-2459, 2016 10 19.
Artigo em Inglês | MEDLINE | ID: mdl-27594143

RESUMO

Protein entrapment within silica matrices during sol-gel formation is an effective way of producing biocatalysts with high load, activity retention, and minimal leaching. On the other hand, mesoporous silica materials have been favored for diffusional control of protein delivery because of their regular pore size and morphology and in spite of the drawback of requiring post-synthesis loading with cargo proteins. Here, we describe a hybrid technology in which fusion of the silica-binding Car9 dodecapeptide to model fluorescent proteins allows for their simultaneous entrapment and surface immobilization within sol-gel monoliths that can be fabricated in air and oil phases. Spherical particles produced by injecting a mixture of silicic acid and Car9-tagged proteins in silicone oil exhibit high surface area (>400 m2/g), 15-nm-diameter mean pore size and homogeneous protein loading. Incubation in arginine-containing buffer disrupts the interaction between Car9 extensions and silica surfaces and triggers the continuous or discontinuous (on/off) release of cargo proteins with pH-tunable kinetics. This simple approach for producing hybrid silica materials that stably encapsulate and release one or more Car9-tagged proteins in a single step may prove useful for applications requiring dynamic control of protein concentration.


Assuntos
Proteínas Imobilizadas/química , Proteínas Recombinantes de Fusão/química , Arginina/química , Soluções Tampão , Catálise , Géis/química , Proteínas de Fluorescência Verde/química , Proteínas de Fluorescência Verde/metabolismo , Proteínas Imobilizadas/metabolismo , Engenharia de Proteínas/métodos , Proteínas Recombinantes de Fusão/metabolismo , Sílica Gel/química , Dióxido de Silício
16.
Nano Lett ; 15(8): 5235-9, 2015 Aug 12.
Artigo em Inglês | MEDLINE | ID: mdl-25986921

RESUMO

We have combined fusion of oligomers with cyclic symmetry and alanine substitutions to eliminate clashes and produce proteins that self-assemble into 2-D arrays upon addition of calcium ions. Using TEM, AFM, small-angle X-ray scattering, and fluorescence microscopy, we show that the designed lattices which are 5 nm high with p3 space group symmetry and 7.25 nm periodicity self-assemble into structures that can exceed 100 µm in characteristic length. The versatile strategy, experimental approach, and hexagonal arrays described herein should prove valuable for the engineering of functional nanostructured materials in 2-D.


Assuntos
Substituição de Aminoácidos , Proteínas de Bactérias/química , Proteínas de Bactérias/genética , Cálcio/química , Nanoestruturas/ultraestrutura , Análise Serial de Proteínas , Salmonella typhimurium/genética , Microscopia de Força Atômica , Microscopia de Fluorescência , Modelos Moleculares , Nanoestruturas/química , Análise Serial de Proteínas/instrumentação , Salmonella typhimurium/química , Difração de Raios X
17.
Biomacromolecules ; 16(10): 3357-61, 2015 Oct 12.
Artigo em Inglês | MEDLINE | ID: mdl-26407134

RESUMO

For nearly 40 years, therapeutic proteins have been stabilized by chemical conjugation of polyethylene glycol (PEG), but recently zwitterionic materials have proved to be a more effective substitute. In this work, we demonstrate that genetic fusion of alternating-charge extensions consisting of anionic glutamic acid (E) and cationic lysine (K) is an effective strategy for protein stabilization. This bioinspired "EKylation" method not only confers the stabilizing benefits of poly(zwitterions) but also allows for rapid biosynthesis of target constructs. Poly(EK) peptides of different predetermined lengths were appended to the C-terminus of a native ß-lactamase and its destabilized TEM-19 mutant. The EK-modified enzymes retained biological activity and exhibited increased stability to environmental stressors such as high temperature and high-salt solutions. This one-step strategy provides a broadly applicable alternative to synthetic polymer conjugation that is biocompatible and degradable.


Assuntos
Ácido Glutâmico/química , Lisina/química , Peptídeos/química , Proteínas/química , Ânions , Cátions , Cinética
18.
Biotechnol Bioeng ; 111(10): 2019-26, 2014 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-24777569

RESUMO

We describe a new affinity purification tag called Car9 that confers proteins to which it is fused micromolar affinity for unmodified silica. When appended to the C-terminus of GFPmut2 through a flexible linker, Car9 promotes efficient adsorption to silica gel and the fusion protein can be released from the particles by incubation with L-lysine. Using a silica gel column and the lysine elution approach in fast protein liquid chromatography (FPLC) mode, Car9-tagged versions of GFPmut2, mCherry and maltose binding protein (MBP) can be recovered from clarified lysates with a purity of 80-90%. Capitalizing on silica's ability to handle large pressure drops, we further show that it is possible to go from cell lysates to purified protein in less than 15 min using a fully disposable device. Finally, we demonstrate that the linker-Car9 region is susceptible to proteolysis by E. coli OmpT and take advantage of this observation to excise the C-terminal extension of GFPmut2-Car9 by incubating purified fusion protein with cells that overproduce the outer membrane protease OmpT. The set of strategies described herein, should reduce the cost of affinity purification by at least 10-fold, cut down purification times to minutes, and allow for the production of proteins with native (or nearly native) termini from their C-terminally-tagged versions.


Assuntos
Cromatografia de Afinidade/métodos , Escherichia coli/genética , Proteínas de Fluorescência Verde/isolamento & purificação , Proteínas Luminescentes/isolamento & purificação , Proteínas Ligantes de Maltose/isolamento & purificação , Proteínas Recombinantes de Fusão/isolamento & purificação , Dióxido de Silício/metabolismo , Proteínas da Membrana Bacteriana Externa/genética , Proteínas da Membrana Bacteriana Externa/metabolismo , Escherichia coli/metabolismo , Proteínas de Escherichia coli/genética , Proteínas de Escherichia coli/metabolismo , Proteínas de Fluorescência Verde/genética , Proteínas de Fluorescência Verde/metabolismo , Hidrólise , Proteínas Luminescentes/genética , Proteínas Luminescentes/metabolismo , Proteínas Ligantes de Maltose/genética , Proteínas Ligantes de Maltose/metabolismo , Peptídeo Hidrolases/genética , Peptídeo Hidrolases/metabolismo , Peptídeos/genética , Peptídeos/isolamento & purificação , Peptídeos/metabolismo , Ligação Proteica , Proteínas Recombinantes de Fusão/genética , Proteínas Recombinantes de Fusão/metabolismo , Proteína Vermelha Fluorescente
19.
Nanomedicine ; 10(3): 571-8, 2014 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-24275478

RESUMO

Distributed and on-demand vaccine production could be game-changing for infectious disease treatment in the developing world by providing new therapeutic opportunities and breaking the refrigeration "cold chain". Here, we show that a fusion protein between a calcium phosphate binding domain and the model antigen ovalbumin can mineralize a biocompatible adjuvant in a single step. The resulting 50 nm calcium phosphate core-immunogen shell particles are comparable to soluble protein in inducing ovalbumin-specific antibody response and class switch recombination in mice. However, single dose vaccination with nanoparticles leads to higher expansion of ovalbumin-specific CD8(+) T cells upon challenge with an influenza virus bearing the ovalbumin-derived SIINFEKL peptide, and these cells produce high levels of IFN-γ. Furthermore, mice exhibit a robust antigen-specific CD8(+) T cell recall response when challenged with virus 8 months post-immunization. These results underscore the promise of immunogen-controlled adjuvant mineralization for just-in-time manufacturing of effective T cell vaccines. FROM THE CLINICAL EDITOR: This paper reports that a fusion protein between a calcium phosphate binding domain and the model antigen ovalbumin can mineralize into a biocompatible adjuvant in a single step, enabling distributed and on-demand vaccine production and eliminating the need for refrigeration of vaccines. The findings highlight the possibility of immunogen-controlled adjuvant mineralization for just-in-time manufacturing of effective T cell vaccines.


Assuntos
Adjuvantes Imunológicos/administração & dosagem , Fosfatos de Cálcio/metabolismo , Nanopartículas/metabolismo , Ovalbumina/administração & dosagem , Proteínas Recombinantes de Fusão/administração & dosagem , Vacinas/administração & dosagem , Adjuvantes Imunológicos/metabolismo , Adjuvantes Imunológicos/farmacologia , Animais , Linfócitos T CD8-Positivos/citologia , Linfócitos T CD8-Positivos/imunologia , Galinhas , Feminino , Humanos , Camundongos , Ovalbumina/imunologia , Ovalbumina/metabolismo , Proteínas Recombinantes de Fusão/imunologia , Proteínas Recombinantes de Fusão/metabolismo , Vacinação , Vacinas/imunologia , Vacinas/metabolismo
20.
Biochem Eng J ; 89: 28-32, 2014 Aug 15.
Artigo em Inglês | MEDLINE | ID: mdl-25013361

RESUMO

The ubiquitous hexahistidine purification tag has been used to conjugate proteins to the shell of CdSe:ZnS quantum dots (QDs) due to its affinity for surface-exposed Zn2+ ions but little attention has been paid to the potential of His-tagged proteins for mineralizing luminescent ZnS nanocrystals. Here, we compare the ability of free histidine, a His tag peptide, His-tagged thioredoxin (TrxA, a monomeric protein), and N- and C-terminally His-tagged versions of Hsp31 (a homodimeric protein) to support the synthesis of Mn-doped ZnS nanocrystals from aqueous precursors under mild conditions of pH (8.2) and temperature (37°C). We find that: (1) it is possible to produce poor quality QDs when histidine is used at high (8 mM) concentration; (2) an increase in local histidine concentration through repetition of the amino acid as a His tag decreases the amount of needed reagent ≈10-fold and improves optical properties; (3) fusion of the same His tag to TrxA allows for ZnS:Mn QDs mineralization at micromolar concentrations; and (4) doubling the local hexahistidine concentration by exploiting Hsp31 dimerization further improves nanocrystal luminescence with the brightest particles obtained when His tags are spatially co-localized at the Hsp31 N-termini. Although hexahistidine tracts are not as efficient as combinatorially selected ZnS binding peptides at QD synthesis, it should be possible to use the large number of available His-tagged proteins and the synthesis approach described herein to produce luminescent nanoparticles whose protein shell carries a broad range of functions.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA