Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
Intervalo de ano de publicação
1.
Pharmaceutics ; 12(1)2020 01 07.
Artigo em Inglês | MEDLINE | ID: mdl-31936070

RESUMO

Diabetes mellitus (DM) has become a major health problem in most countries of the world. DM causes many complications, including hyperglycemia, diabetic ketoacidosis, and death. In Asia, mulberry has been used widely in the treatment of DM. Combination of drugs with herbal medicine may reduce the unwanted side effects caused by drugs. In this study, the influence of extended mulberry leaves extract (MLE) intake on metformin (Met) was evaluated in terms of pharmacokinetics and pharmacodynamics in DM-induced rats. Three week-treatment of MLE alone produced the anti-hyperglycemic effect (around 24%) if compared to the control. Interestingly, Met administration after MLE treatment for 3 weeks enhanced about 49% of the anti-hyperglycemic effect of Met. In addition, the extended intake of MLE potentiated the anti-hyperglycemic effect of Met on various concentrations. This potentiated anti-hyperglycemic effect of Met appears to be due to the pharmacokinetic change of Met. In this study, 3 week-treatment of MLE reduced the elimination of Met in DM-induced rats. In addition, MLE reduced the human organic cation transporter 2 (hOCT2) activity in a concentration-dependent manner. Thus, these findings suggest that MLE lowered the elimination of Met via inhibiting the hOCT2.

2.
Mater Sci Eng C Mater Biol Appl ; 104: 109980, 2019 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-31500011

RESUMO

The aim of this study was to solidify a ticagrelor loaded self-microemulsifying drug delivery system (TCG-SM) with enhanced dissolution and bioavailability of ticagrelor (TCG) for developing TCG-SM granules and tablets. TCG was dissolved in the self-microemulsifying drug delivery system (SMEDDS) and TCG-SM was solidified by adsorption to the optimized adsorbent through statistical design. In order to select an appropriate adsorbent, the physical properties (bulk density, tapped density, angle of repose, and liquid adsorption capacity) of silica-based adsorbents (Neusilin US2, Florite R, Aerosil 200, and Florite PS-10) and non silica-based adsorbents (Avicel PH102, Pharmatose 100M, Pearlitol 200, LH-11, and Emcompress) were investigated. Neusilin US2 and Florite R were selected as suitable adsorbents and their mixing ratios were optimized using statistical experimental design. The predicted values of physical properties by statistical design showed the error percentage of <10% compared to actual values. As a result of the statistical approach, TCG-SM (490 mg) was successfully solidified with Nesulin US2 (167.8 mg) and Florite R (82.2 mg), which showed good powder properties and improved dissolution of TCG. The solidified TCG-SM (Sol-TCG-SM), disintegrant (croscarmellose sodium), diluent (microcrystalline cellulose), binder (polyvinylpyrrolidone), and lubricant (magnesium stearate) were mixed to prepare granules. And, the granules with total weight of 900 mg were tableted using 16 mm oval-shape punch. The prepared Sol-TCG-SM tablet showed good tablet properties and maintained self-microemulsifying ability, such as microemulsion formation and enhanced dissolution of TCG. In vivo pharmacokinetic study, the relative bioavailability of Sol-TCG-SM exhibited 108.1% and 632.7% compared to TCG-SM and raw TCG powder, respectively. In conclusion, we successfully solidified SMEDDS with improved oral bioavailability of insoluble drugs such as TCG through a statistical design. This suggests a new approach that can be utilized in the production of solidified SMEDDS.


Assuntos
Emulsões/química , Solubilidade/efeitos dos fármacos , Ticagrelor/química , Administração Oral , Compostos de Alumínio/química , Animais , Disponibilidade Biológica , Celulose/química , Química Farmacêutica/métodos , Sistemas de Liberação de Medicamentos/métodos , Excipientes/química , Compostos de Magnésio/química , Masculino , Pós/química , Ratos , Ratos Sprague-Dawley , Silicatos/química , Dióxido de Silício/química , Comprimidos/química
3.
Int J Pharm ; 555: 11-18, 2019 Jan 30.
Artigo em Inglês | MEDLINE | ID: mdl-30448313

RESUMO

The aim of this study is to improve the bioavailability of ticagrelor, BCS class 4 drug, using solid dispersion technique, and to evaluate the potential of ticagrelor loaded-solid dispersion, as a new formulation. The solid dispersion formulation was prepared via solvent evaporation method using ethanol. TPGS and Neusilin® US2 selected via screening studies were used for preparing formulation. The results of scanning electron microscopy, differential scanning calorimetry and powder X-ray diffraction showed that the crystallinity of the ticagrelor was completely transformed to an amorphous form and maintained in the solid dispersion formulation. The released amount of the optimized solid dispersion significantly increased by 2.2- and 34-fold in comparison with physical mixture (Ticagrelor:TPGS:Neusilin® US2 = 1:2:2, w/w/w) and commercial product (Brilinta®) in distilled water at 90 min, respectively. The absorptive permeability was improved (1.4-fold) and the efflux ratio was decreased (0.45-fold) by formulation containing TPGS acting as a P-gp inhibitor compared to pure drug. The solid dispersion formulation improved the peak plasma concentration (Cmax) and relative bioavailability compared to that of pure drug as 238.09 ±â€¯25.96% and 219.78 ±â€¯36.33%, respectively, after oral administration in rats. Thus, we successfully prepared the solid dispersion formulation for enhancing oral bioavailability of ticagrelor, and then this formulation would be recommended as a practical oral pharmaceutical product.


Assuntos
Química Farmacêutica/métodos , Composição de Medicamentos/métodos , Antagonistas do Receptor Purinérgico P2Y/administração & dosagem , Ticagrelor/administração & dosagem , Administração Oral , Animais , Disponibilidade Biológica , Varredura Diferencial de Calorimetria , Cristalização , Liberação Controlada de Fármacos , Absorção Intestinal , Masculino , Microscopia Eletrônica de Varredura , Permeabilidade , Antagonistas do Receptor Purinérgico P2Y/química , Antagonistas do Receptor Purinérgico P2Y/farmacocinética , Ratos , Ratos Sprague-Dawley , Solubilidade , Solventes/química , Ticagrelor/química , Ticagrelor/farmacocinética , Difração de Raios X
4.
Cancers (Basel) ; 11(6)2019 Jun 11.
Artigo em Inglês | MEDLINE | ID: mdl-31212681

RESUMO

Strategies for the development of anticancer drug delivery systems have undergone a dramatic transformation in the last few decades. Lipid-based drug delivery systems, such as a nanostructured lipid carrier (NLC), are one of the systems emerging to improve the outcomes of tumor treatments. However, NLC can act as an intruder and cause an immune response. To overcome this limitation, biomimicry technology was introduced to decorate the surface of the nanoparticles with various cell membrane proteins. Here, we designed paclitaxel (PT)-loaded nanostructured lipid carrier (PT-NLC) with platelet (PLT) membrane protein because PLT is involved with angiogenesis and interaction of circulating tumor cells. After PLT was isolated from blood using the gravity-gradient method and it was used for coating PT-NLC. Spherical PT-NLC and platelet membrane coated PT-NLC (P-PT-NLC) were successfully fabricated with high encapsulation efficiency (EE) (99.98%) and small particle size (less than 200 nm). The successful coating of PT-NLC with a PLT membrane was confirmed by the identification of CD41 based on transmission electron microscopy (TEM), western blot assay and enzyme-linked immunosorbent assay (ELISA) data. Moreover, the stronger affinity of P-PT-NLC than that of PT-NLC toward tumor cells was observed. In vitro cell study, the PLT coated nanoparticles successfully displayed the anti-tumor effect to SK-OV-3 cells. In summary, the biomimicry carrier system P-PT-NLC has an affinity and targeting ability for tumor cells.

5.
Int J Nanomedicine ; 14: 1193-1212, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-30863054

RESUMO

BACKGROUND: Ticagrelor (TCG) is used to inhibit platelet aggregation in patients with acute coronary syndrome, but its poor solubility and low bioavailability limit its in vivo efficacy. The purpose of this study was to manufacture an optimized TCG-loaded self-microemulsifying drug delivery system (SMEDDS) to enhance the oral bioavailability and antiplatelet activity of TCG. MATERIALS AND METHODS: Solubility and emulsification tests were conducted to determine the most suitable oils, surfactants, and cosurfactants. Scheffé's mixture design was applied to optimize the percentage of each component applied in the SMEDDS formulation to achieve optimal physical characteristics, ie, high solubility of TCG in SMEDDS, small droplet size, low precipitation, and high transmittance. RESULTS: The optimized TCG-loaded SMEDDS (TCG-SM) formulation composed of 10.0% Capmul MCM (oil), 53.8% Cremophor EL (surfactant), and 36.2% Transcutol P (cosurfactant) significantly improving the dissolution of TCG in various media compared with TCG in Brilinta® (commercial product). TCG-SM exhibited higher cellular uptake and permeability in Caco-2 cells than raw TCG suspension. In pharmacokinetic studies in rats, TCG-SM exhibited higher oral bioavailability with 5.7 and 6.4 times higher area under the concentration-time curve and maximum plasma concentration, respectively, than a raw TCG suspension. Antiplatelet activity studies exhibited that the TCG-SM formulation showed significantly improved inhibition of platelet aggregation compared with raw TCG at the same dose of TCG. And, a 10 mg/kg dose of raw TCG suspension and a 5 mg/kg dose of TCG-SM had a similar area under the inhibitory curve (907.0%±408.8% and 907.8%±200.5%⋅hours, respectively) for antiplatelet activity. CONCLUSION: These results suggest that the developed TCG-SM could be successfully used as an efficient method to achieve the enhanced antiplatelet activity and bioavailability of TCG.


Assuntos
Sistemas de Liberação de Medicamentos/métodos , Emulsões/química , Inibidores da Agregação Plaquetária/farmacologia , Ticagrelor/farmacologia , Administração Oral , Animais , Disponibilidade Biológica , Células CACO-2 , Sobrevivência Celular/efeitos dos fármacos , Humanos , Masculino , Modelos Teóricos , Ratos Sprague-Dawley , Ticagrelor/administração & dosagem , Ticagrelor/sangue , Ticagrelor/farmacocinética
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA