Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
Artigo em Inglês | MEDLINE | ID: mdl-36231305

RESUMO

Infectious disease is a risk threating industrial operations and worker health. In gastrointestinal disease cases, outbreak is sporadic, and propagation is often terminated within certain populations, although cases in industrial sites are continuously reported. The ISO 31000 international standard for risk management, an epidemiological triad model, and a scoping review were the methods used to establish response procedures (scenarios) to protect workers from the risk of the propagation of a gastrointestinal disease. First, human reservoirs and transmission routes were identified as controllable risk sources based on a scoping review and the use of a triad model. Second, the possibility of fomite- or surface-mediated transmission appeared to be higher based on environmental characterization. Thus, the propagation could be suppressed using epidemiological measures categorized by reservoirs (workers) or transmission routes during a primary case occurrence. Next, using results of a matrix, a strengths-weaknesses-opportunities-threats analysis and a scoping review, the risk treatment option was determined as risk taking and sharing. According to epidemiology of gastrointestinal infections, systematic scenarios may ensure the efficacy of propagation control. Standardized procedures with practicality and applicability were established for categorized scenarios. This study converged ISO 31000 standards, an epidemiological model, and scoping review methods to construct a risk management scenario (non-pharmaceutical intervention) optimized for the unique characteristics of a specific occupational cluster.


Assuntos
Surtos de Doenças , Modelos Epidemiológicos , Surtos de Doenças/prevenção & controle , Humanos , Gestão de Riscos , Local de Trabalho
2.
Mycobiology ; 50(5): 345-356, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36404906

RESUMO

The fungal distribution, diversity, and load were analyzed in the geographically segregated island groundwater systems in Korea. A total of 79 fungal isolates were secured from seven islands and identified based on the internal transcribed spacer (ITS) sequences. They belonged to three phyla (Ascomycota, Basidiomycota, and Chlorophyta), five classes, sixteen orders, twenty-two families, and thirty-one genera. The dominant phylum was Ascomycota (91.1%), with most fungi belonging to the Cladosporium (21.5%), Aspergillus (15.2%), and Stachybotrys (8.9%) genera. Cladosporium showed higher dominance and diversity, being widely distributed throughout the geographically segregated groundwater systems. Based on the diversity indices, the genera richness (4.821) and diversity (2.550) were the highest in the groundwater system of the largest scale. As turbidity (0.064-0.462) increased, the overall fungal count increased and the residual chlorine (0.089-0.308) had low relevance compared with the total count and fungal diversity. Cladosporium showed normal mycelial growth in de-chlorinated sterilized samples. Overall, if turbidity increases under higher fungal diversity, bio-deterioration in groundwater-supplying facilities and public health problems could be intensified, regardless of chlorine treatment. In addition to fungal indicators and analyzing methods, physical hydrostatic treatment is necessary for monitoring and controlling fungal contamination.

3.
Sensors (Basel) ; 11(7): 7243-61, 2011.
Artigo em Inglês | MEDLINE | ID: mdl-22164015

RESUMO

A land-based mobile mapping system (MMS) is flexible and useful for the acquisition of road environment geospatial information. It integrates a set of imaging sensors and a position and orientation system (POS). The positioning quality of such systems is highly dependent on the accuracy of the utilized POS. This limitation is the major drawback due to the elevated cost associated with high-end GPS/INS units, particularly the inertial system. The potential accuracy of the direct sensor orientation depends on the architecture and quality of the GPS/INS integration process as well as the validity of the system calibration (i.e., calibration of the individual sensors as well as the system mounting parameters). In this paper, a novel single-step procedure using integrated sensor orientation with relative orientation constraint for the estimation of the mounting parameters is introduced. A comparative analysis between the proposed single-step and the traditional two-step procedure is carried out. Moreover, the estimated mounting parameters using the different methods are used in a direct geo-referencing procedure to evaluate their performance and the feasibility of the implemented system. Experimental results show that the proposed system using single-step system calibration method can achieve high 3D positioning accuracy.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA