Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 22
Filtrar
1.
Int J Mol Sci ; 25(10)2024 May 11.
Artigo em Inglês | MEDLINE | ID: mdl-38791283

RESUMO

Fruit color is an intuitive quality of horticultural crops that can be used as an evaluation criterion for fruit ripening and is an important factor affecting consumers' purchase choices. In this study, a genetic population from the cross of green peel 'Qidong' and purple peel '8 guo' revealed that the purple to green color of eggplant peel is dominant and controlled by a pair of alleles. Bulked segregant analysis (BSA), SNP haplotyping, and fine genetic mapping delimited candidate genes to a 350 kb region of eggplant chromosome 10 flanked by markers KA2381 and CA8828. One ANS gene (EGP22363) was predicted to be a candidate gene based on gene annotation and sequence alignment of the 350-kb region. Sequence analysis revealed that a single base mutation of 'T' to 'C' on the exon green peel, which caused hydrophobicity to become hydrophilic serine, led to a change in the three-level spatial structure. Additionally, EGP22363 was more highly expressed in purple peels than in green peels. Collectively, EGP22363 is a strong candidate gene for anthocyanin biosynthesis in purple eggplant peels. These results provide important information for molecular marker-assisted selection in eggplants, and a basis for analyzing the regulatory pathways responsible for anthocyanin biosynthesis in eggplants.


Assuntos
Antocianinas , Mapeamento Cromossômico , Frutas , Solanum melongena , Solanum melongena/genética , Solanum melongena/metabolismo , Antocianinas/biossíntese , Antocianinas/genética , Frutas/genética , Frutas/metabolismo , Pigmentação/genética , Polimorfismo de Nucleotídeo Único , Genes de Plantas , Regulação da Expressão Gênica de Plantas , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo
2.
Int J Mol Sci ; 24(18)2023 Sep 07.
Artigo em Inglês | MEDLINE | ID: mdl-37762090

RESUMO

Pak choi is one of the most important leafy vegetables planted in East Asia and provides essential nutrients for the human body. Purple pak choi differs mainly in leaf colour but exhibits distinct nutritional profiles from green pak choi. In this study, we performed metabolic and transcriptomic analyses to uncover the mechanisms underlying the differences in metabolite biosynthesis profiles between the two pak choi varieties. Metabolite profiling revealed significant differences in the levels of metabolites, mainly amino acids and their derivatives and flavonoids. Furthermore, 34 flavonoids significantly differed between green and purple pak choi leaves, and cyanidin and its derivative anthocyanins were abundant in purple pak choi. In addition, we found that the structural genes CHS, DFR, ANS, and UGT75C1, as well as the transcription factor MYB2, play a major role in anthocyanin synthesis. These results provide insight into the molecular mechanisms underlying leaf pigmentation in pak choi and offer a platform for assessing related varieties.


Assuntos
Antocianinas , Transcriptoma , Humanos , Antocianinas/metabolismo , Perfilação da Expressão Gênica/métodos , Flavonoides , Verduras/metabolismo , Regulação da Expressão Gênica de Plantas , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo
3.
Environ Microbiol ; 24(3): 1093-1116, 2022 03.
Artigo em Inglês | MEDLINE | ID: mdl-34472183

RESUMO

Colletotrichum higginsianum is an important fungal pathogen causing anthracnose disease of cruciferous plants. In this study, we characterized a putative orthologue of yeast SPE1 in C. higginsianum, named ChODC. Deletion mutants of ChODC were defective in hyphal and conidial development. Importantly, deletion of ChODC significantly affected appressorium-mediated penetration in C. higginsianum. However, polyamines partially restore appressorium function and virulence indicating that loss of ChODC caused significantly decreased virulence by the crosstalk between polyamines and other metabolic pathways. Subsequently, transcriptomic and metabolomic analyses demonstrated that ChODC played an important role in metabolism of various carbon and nitrogen compounds including amino acids, carbohydrates and lipids. Along with these clues, we found deletion of ChODC affected glycogen and lipid metabolism, which were important for conidial storage utilization and functional appressorium formation. Loss of ChODC affected the mTOR signalling pathway via modulation of autophagy. Interestingly, cAMP treatment restored functional appressoria to the ΔChODC mutant, and rapamycin treatment also stimulated formation of functional appressoria in the ΔChODC mutant. Overall, ChODC was associated with the polyamine biosynthesis pathway, as a mediator of cAMP and mTOR signalling pathways to regulate appressorium function. Our study provides evidence of a link between ChODC and the cAMP signalling pathway and defines a novel mechanism by which ChODC regulates infection-associated autophagy and plant infection by fungi.


Assuntos
Ornitina Descarboxilase , Doenças das Plantas , Colletotrichum , Proteínas Fúngicas/metabolismo , Redes e Vias Metabólicas/genética , Ornitina Descarboxilase/metabolismo , Doenças das Plantas/microbiologia , Poliaminas , Esporos Fúngicos/metabolismo , Serina-Treonina Quinases TOR/metabolismo , Virulência/genética
4.
BMC Plant Biol ; 22(1): 245, 2022 May 18.
Artigo em Inglês | MEDLINE | ID: mdl-35585498

RESUMO

BACKGROUND: Sugar not only is an important biomacromolecule that plays important roles in plant growth, development, and biotic and abiotic stress tolerance but also provides a skeleton for other macromolecules, such as proteins and nucleic acids. Sugar transporter proteins (STPs) play essential roles in plant sugar transport and ultimately affect the abovementioned life processes. However, the evolutionary dynamics of this important gene family in Brassicaceae crops are still largely unknown, and the functional differentiation of radish STP genes remains unclear. RESULTS: In the present study, a comparative genomic study of STP genes in five representative Brassicaceae crops was conducted, and a total of 25, 25, 28, 36 and 49 STP genes were individually identified in Raphanus sativus (Rs), Brassica oleracea (Bo), B. rapa (Br), B. napus (Bn) and B. juncea (Bj), which were divided into four clades by phylogenetic analysis. The number of STP genes was no direct correlation with genome size and the total number of coding genes in Brassicaceae crops, and their physical and chemical properties showed no significant difference. Expression analysis showed that radish STP genes play vital roles not only in flower and seedpod development but also under heavy metal (cadmium, chromium and lead), NaCl and PEG-6000 stresses, Agrobacterium tumefaciens infection, and exogenous sugar treatment. RsSTP13.2 was significantly upregulated in the resistant radish cultivar by A. tumefaciens infection and induced by heavy metal, NaCl and PEG-6000 stress, indicating that it is involved in resistance to both biotic and abiotic stress in radish. CONCLUSIONS: The present study provides insights into the evolutionary patterns of the STP gene family in Brassicaceae genomes and provides a theoretical basis for future functional analysis of STP genes in Brassicaceae crops.


Assuntos
Brassicaceae , Metais Pesados , Raphanus , Brassicaceae/genética , Brassicaceae/metabolismo , Evolução Molecular , Regulação da Expressão Gênica de Plantas , Genoma de Planta , Metais Pesados/metabolismo , Filogenia , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Raphanus/genética , Raphanus/metabolismo , Cloreto de Sódio/metabolismo , Estresse Fisiológico/genética , Açúcares
5.
Int J Mol Sci ; 20(23)2019 Dec 03.
Artigo em Inglês | MEDLINE | ID: mdl-31816887

RESUMO

Lipoxygenases (LOXs) are non-heme iron-containing dioxygenases involved in many developmental and stress-responsive processes in plants. However, little is known about the radish LOX gene family members and their functions in response to biotic and abiotic stresses. In this study, we completed a genome-wide analysis and expression profiling of RsLOX genes under abiotic and biotic stress conditions. We identified 11 RsLOX genes, which encoded conserved domains, and classified them in 9-LOX and 13-LOX categories according to their phylogenetic relationships. The characteristic structural features of 9-LOX and 13-LOX genes and the encoded protein domains as well as their evolution are presented herein. A qRT-PCR analysis of RsLOX expression levels in the roots under simulated drought, salinity, heat, and cold stresses, as well as in response to a Plasmodiophora brassicae infection, revealed three tandem-clustered RsLOX genes that are involved in responses to various environmental stresses via the jasmonic acid pathway. Our findings provide insights into the evolution and potential biological roles of RsLOXs related to the adaptation of radish to stress conditions.


Assuntos
Biologia Computacional , Lipoxigenase/genética , Família Multigênica , Raphanus/genética , Raphanus/fisiologia , Estresse Fisiológico/genética , Sequência de Aminoácidos , Cromossomos de Plantas/genética , Sequência Conservada , Perfilação da Expressão Gênica , Regulação da Expressão Gênica de Plantas , Lipoxigenase/química , Lipoxigenase/metabolismo , Filogenia , Domínios Proteicos , Raphanus/enzimologia , Sintenia/genética
6.
Mol Genet Genomics ; 291(1): 93-105, 2016 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-26174736

RESUMO

Parthenocarpic fruit is a very attractive trait for consumers and especially in eggplants where seeds can lead to browning of the flesh and bitterness. However, the molecular mechanisms underlying parthenocarpy in eggplant still remain unknown. Some auxin response factors have been previously shown in model species, such as Arabidopsis and tomato, to play an important role in such a process. Here, we have identified a natural parthenocarpic mutant and showed that ARF8 from eggplant (SmARF8), is down-regulated in buds compared to wild-type plants. Further characterization of SmARF8 showed that it is a nuclear protein and an active transcriptional regulator. We determined that amino acids 629-773 of SmARF8 act as the transcriptional activation domain, the C terminus of SmARF8 is the protein-binding domain, and that SmARF8 might form homodimers. Expression analysis in eggplant showed that SmARF8 is expressed ubiquitously in all tissues and organs and is responsive to auxin. Eggplant transgenic lines harboring RNA interference of SmARF8 exhibited parthenocarpy in unfertilized flowers, suggesting that SmARF8 negatively regulates fruit initiation. Interestingly, SmARF8-overexpressing Arabidopsis lines also induced parthenocarpy. These results indicate that SmARF8 could affect the dimerization of auxin/indole acetic acid repressors with SmARF8 via domains III and IV and thus induce fruit development. Furthermore, the introduction of SmARF8 full-length cDNA could partially complement the parthenocarpic phenotypes in Arabidopsis arf8-1 and arf8-4 mutants. Collectively, our results demonstrate that SmARF8 may act as a key negative regulator involved in parthenocarpic fruit development of eggplant. These findings give more insights into the conserved mechanisms leading to parthenocarpy in which auxin signaling plays a pivotal role, and provide potential target for eggplant breeding.


Assuntos
Proteínas de Plantas/genética , Solanum melongena/genética , Fatores de Transcrição/genética , Proteínas de Ligação a DNA/genética , Regulação para Baixo/efeitos dos fármacos , Regulação para Baixo/genética , Flores/efeitos dos fármacos , Flores/genética , Frutas/efeitos dos fármacos , Frutas/genética , Regulação da Expressão Gênica de Plantas/efeitos dos fármacos , Regulação da Expressão Gênica de Plantas/genética , Ácidos Indolacéticos/farmacologia , Mutação/efeitos dos fármacos , Mutação/genética , Plantas Geneticamente Modificadas/efeitos dos fármacos , Plantas Geneticamente Modificadas/genética , Sementes/efeitos dos fármacos , Sementes/genética , Solanum melongena/efeitos dos fármacos
7.
BMC Plant Biol ; 15: 105, 2015 Apr 18.
Artigo em Inglês | MEDLINE | ID: mdl-25928652

RESUMO

BACKGROUND: Radish (Raphanus sativus L., 2n = 2x = 18) is a major root vegetable crop especially in eastern Asia. Radish root contains various nutritions which play an important role in strengthening immunity. Repetitive elements are primary components of the genomic sequence and the most important factors in genome size variations in higher eukaryotes. To date, studies about repetitive elements of radish are still limited. To better understand genome structure of radish, we undertook a study to evaluate the proportion of repetitive elements and their distribution in radish. RESULTS: We conducted genome-wide characterization of repetitive elements in radish with low coverage genome sequencing followed by similarity-based cluster analysis. Results showed that about 31% of the genome was composed of repetitive sequences. Satellite repeats were the most dominating elements of the genome. The distribution pattern of three satellite repeat sequences (CL1, CL25, and CL43) on radish chromosomes was characterized using fluorescence in situ hybridization (FISH). CL1 was predominantly located at the centromeric region of all chromosomes, CL25 located at the subtelomeric region, and CL43 was a telomeric satellite. FISH signals of two satellite repeats, CL1 and CL25, together with 5S rDNA and 45S rDNA, provide useful cytogenetic markers to identify each individual somatic metaphase chromosome. The centromere-specific histone H3 (CENH3) has been used as a marker to identify centromere DNA sequences. One putative CENH3 (RsCENH3) was characterized and cloned from radish. Its deduced amino acid sequence shares high similarities to those of the CENH3s in Brassica species. An antibody against B. rapa CENH3, specifically stained radish centromeres. Immunostaining and chromatin immunoprecipitation (ChIP) tests with anti-BrCENH3 antibody demonstrated that both the centromere-specific retrotransposon (CR-Radish) and satellite repeat (CL1) are directly associated with RsCENH3 in radish. CONCLUSIONS: Proportions of repetitive elements in radish were estimated and satellite repeats were the most dominating elements. Fine karyotyping analysis was established which allow us to easily identify each individual somatic metaphase chromosome. Immunofluorescence- and ChIP-based assays demonstrated the functional significance of satellite and centromere-specific retrotransposon at centromeres. Our study provides a valuable basis for future genomic studies in radish.


Assuntos
DNA de Plantas/genética , Histonas/genética , Cariótipo , Proteínas de Plantas/genética , Raphanus/genética , Centrômero/metabolismo , DNA de Plantas/metabolismo , Histonas/metabolismo , Hibridização in Situ Fluorescente , Metáfase , Fases de Leitura Aberta , Proteínas de Plantas/metabolismo , Raphanus/citologia , Raphanus/metabolismo , Sequências Repetitivas de Ácido Nucleico
8.
Genes (Basel) ; 15(4)2024 03 26.
Artigo em Inglês | MEDLINE | ID: mdl-38674350

RESUMO

Seed dormancy is a life adaptation trait exhibited by plants in response to environmental changes during their growth and development. The dormancy of commercial seeds is the key factor affecting seed quality. Eggplant seed dormancy is controlled by quantitative trait loci (QTLs), but reliable QTLs related to eggplant dormancy are still lacking. In this study, F2 populations obtained through the hybridization of paternally inbred lines with significant differences in dormancy were used to detect regulatory sites of dormancy in eggplant seeds. Three QTLs (dr1.1, dr2.1, and dr6.1) related to seed dormancy were detected on three chromosomes of eggplant using the QTL-Seq technique. By combining nonsynonymous sites within the candidate regions and gene functional annotation analysis, nine candidate genes were selected from three QTL candidate regions. According to the germination results on the eighth day, the male parent was not dormant, but the female parent was dormant. Quantitative real-time polymerase chain reaction (qRT-PCR) was used to verify the expression of nine candidate genes, and the Smechr0201082 gene showed roughly the same trend as that in the phenotypic data. We proposed Smechr0201082 as the potential key gene involved in regulating the dormancy of eggplant seeds. The results of seed experiments with different concentrations of gibberellin A3 (GA3) showed that, within a certain range, the higher the gibberellin concentration, the earlier the emergence and the higher the germination rate. However, higher concentrations of GA3 may have potential effects on eggplant seedlings. We suggest the use of GA3 at a concentration of 200-250 mg·L-1 to treat dormant seeds. This study provides a foundation for the further exploration of genes related to the regulation of seed dormancy and the elucidation of the molecular mechanism of eggplant seed dormancy and germination.


Assuntos
Germinação , Dormência de Plantas , Locos de Características Quantitativas , Sementes , Solanum melongena , Solanum melongena/genética , Solanum melongena/crescimento & desenvolvimento , Locos de Características Quantitativas/genética , Dormência de Plantas/genética , Sementes/genética , Sementes/crescimento & desenvolvimento , Germinação/genética , Regulação da Expressão Gênica de Plantas , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Mapeamento Cromossômico , Fenótipo , Genes de Plantas/genética
9.
Front Plant Sci ; 15: 1329890, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38371408

RESUMO

Radish (Raphanus sativus L.) is a vegetable crop with economic value and ecological significance in the genus Radish, family Brassicaceae. In recent years, developed countries have attached great importance to the collection and conservation of radish germplasm resources and their research and utilization, but the lack of population genetic information and molecular markers has hindered the development of the genetic breeding of radish. In this study, we integrated the radish genomic data published in databases for the development of single-nucleotide polymorphism (SNP) markers, and obtained a dataset of 308 high-quality SNPs under strict selection criteria. With the support of Kompetitive Allele-Specific PCR (KASP) technology, we screened a set of 32 candidate core SNP marker sets to analyse the genetic diversity of the collected 356 radish varieties. The results showed that the mean values of polymorphism information content (PIC), minor allele frequency (MAF), gene diversity and heterozygosity of the 32 candidate core SNP markers were 0.32, 0.30, 0.40 and 0.25, respectively. Population structural analysis, principal component analysis and genetic evolutionary tree analysis indicated that the 356 radish materials were best classified into two taxa, and that the two taxa of the material were closely genetically exchanged. Finally, on the basis of 32 candidate core SNP markers we calculated 15 core markers using a computer algorithm to construct a fingerprint map of 356 radish varieties. Furthermore, we constructed a core germplasm population consisting of 71 radish materials using 32 candidate core markers. In this study, we developed SNP markers for radish cultivar identification and genetic diversity analysis, and constructed DNA fingerprints, providing a basis for the identification of radish germplasm resources and molecular marker-assisted breeding as well as genetic research.

10.
Foods ; 12(16)2023 Aug 17.
Artigo em Inglês | MEDLINE | ID: mdl-37628081

RESUMO

Grafting has a significant impact on the botany properties, commercial character, disease resistance, and productivity of eggplants. However, the mechanism of phenotypic modulation on grafted eggplants is rarely reported. In this study, a widely cultivated eggplant (Solanum. melongena cv. 'Zheqie No.10') was selected as the scion and grafted, respectively, onto four rootstocks of TOR (S. torvum), Sa (S. aculeatissimum), SS (S. sisymbriifolium), and Sm64R (S. melongena cv. 'Qiezhen No. 64R') for phenotypic screening. Physiological and biochemical analysis showed the rootstock Sm64R could improve the fruit quality with the increasing of fruit size, yield, and the contents of total soluble solid, phenolic acid, total amino acid, total sugar, and vitamin C. To further investigate the improvement of fruit quality on Sm64R, a transcriptome and a metabolome between the Sm64R-grafted eggplant and self-grafted eggplant were performed. Significant differences in metabolites, such as phenolic acids, lipids, nucleotides and derivatives, alkaloids, terpenoids, and amino acids, were observed. Differential metabolites and differentially expressed genes were found to be abundant in three core pathways of nutritional qualities, including biosynthesis of phenylpropanoids, phospholipids, and nucleotide metabolism. Thus, this study may provide a novel insight into the effects of grafting on the fruit quality in eggplant.

11.
Food Chem ; 403: 134469, 2023 Mar 01.
Artigo em Inglês | MEDLINE | ID: mdl-36358102

RESUMO

Radishes are root vegetables that are rich in bioactive compounds and provide numerous health benefits, but the overall metabolic profiles of radish taproots and the metabolic differences among different edible types are not fully understood. In this research, we used UHPLC-Q-TOF-MS to identify the metabolites in cooked, processed and fruit radishes of ten varieties. In total, 264 metabolites belonging to 18 categories were detected. A multivariate analysis revealed that the metabolite composition differed among the three radish groups, and a comparative analysis showed that the significantly differentially accumulated metabolites were mainly amino acids and derivatives, lipids, flavonoids, hydroxycinnamate derivatives and carbohydrates. The accumulation of metabolites, particularly flavonoids, was greater in fruit radishes than in cooked and processed radishes. This work provides novel insights into the radish metabolomic profiles for assessment of the nutritional value of different edible radish types for humans.


Assuntos
Raphanus , Humanos , Raphanus/química , Cromatografia Líquida de Alta Pressão , Metaboloma , Flavonoides/análise , Metabolômica , Suplementos Nutricionais
12.
Genes (Basel) ; 13(7)2022 06 27.
Artigo em Inglês | MEDLINE | ID: mdl-35885945

RESUMO

Flowering time is an important agronomic trait in Brassica rapa and has a wide range of variation. The change from vegetative to reproductive development is a major transition period, especially in flowering vegetable crops. In this study, two non-heading Chinese cabbage varieties with significantly different flowering times, Pak-choi (B. rapa var. communis Tesn et Lee) and Caitai (B. rapa var. tsaitai Hort.), were used to construct segregated F2 populations. The bulk-segregant approach coupled with whole genome re-sequencing was used for QTL sequencing (QTL-seq) analysis to map flowering time traits. The candidate genes controlling flowering time in B. rapa were predicted by homologous gene alignment and function annotation. The major-effect QTL ft7.1 was detected on chromosome A07 of B. rapa, and the FT family gene BrFT was predicted as the candidate gene. Moreover, a new promoter regional difference of 1577 bp was revealed by analyzing the sequence of the BrFT gene. The promoter region activity analysis and divergent gene expression levels indicated that the difference in the promoter region may contribute to different flowering times. These findings provide insights into the mechanisms underlying the flowering time in Brassica and the candidate genes regulating flowering in production.


Assuntos
Brassica rapa , Brassica , Brassica/genética , Mapeamento Cromossômico , Fenótipo , Regiões Promotoras Genéticas , Locos de Características Quantitativas/genética
13.
Commun Biol ; 5(1): 698, 2022 07 14.
Artigo em Inglês | MEDLINE | ID: mdl-35835849

RESUMO

Prohibitins are highly conserved eukaryotic proteins in mitochondria that function in various cellular processes. The roles of prohibitins in fungal virulence and their regulatory mechanisms are still unknown. Here, we identified the prohibitins ChPhb1 and ChPhb2 in a plant pathogenic fungus Colletotrichum higginsianum and investigated their roles in the virulence of this anthracnose fungus attacking crucifers. We demonstrate that ChPhb1 and ChPhb2 are required for the proper functioning of mitochondria, mitophagy and virulence. ChPhb1 and ChPhb2 interact with the autophagy-related protein ChATG24 in mitochondria, and ChATG24 shares similar functions with these proteins in mitophagy and virulence, suggesting that ChATG24 is involved in prohibitin-dependent mitophagy. ChPhb1 and ChPhb2 modulate the translocation of ChATG24 into mitochondria during mitophagy. The role of ChATG24 in mitophagy is further confirmed to be conserved in plant pathogenic fungi. Our study presents that prohibitins regulate fungal virulence by mediating ATG24-assisted mitophagy.


Assuntos
Mitofagia , Proibitinas , Mitocôndrias/metabolismo , Membranas Mitocondriais/metabolismo , Virulência
14.
Gene ; 817: 146170, 2022 Apr 05.
Artigo em Inglês | MEDLINE | ID: mdl-35031420

RESUMO

Plasmodiophora brassicae is a protozoan pathogen that causes clubroot disease, which is one of the most destructive diseases for Brassica crops, including radish. However, little is known about the molecular mechanism of clubroot resistance in radish. In this study, we performed a comparative transcriptome analysis between resistant and susceptible radish inoculated with P. brassicae. More differentially expressed genes (DEGs) were identified at 28 days after inoculation (DAI) compared to 7 DAI in both genotypes. Gene ontology (GO) and KEGG enrichment indicated that stress/defense response, secondary metabolic biosynthesis, hormone metabolic process, and cell periphery are directly involved in the defense response process. Further analysis of the transcriptome revealed that effector-triggered immunity (ETI) plays key roles in the defense response. The plant hormones jasmonic acid (JA), ethylene (ET), and abscisic acid (ABA) related genes are activated in clubroot defense in the resistant line. Auxin (AUX) hormone related genes are activated in the developing galls of susceptible radish. Our study provides a global transcriptional overview for clubroot development for insights into the P. brassicae defense mechanisms in radish.


Assuntos
Doenças das Plantas/parasitologia , Plasmodioforídeos/fisiologia , Raphanus/genética , Raphanus/parasitologia , Resistência à Doença/genética , Perfilação da Expressão Gênica , Genótipo , Doenças das Plantas/genética , Reguladores de Crescimento de Plantas/metabolismo
15.
Hortic Res ; 7(1): 153, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-33024567

RESUMO

Eggplant (Solanum melongena L.) is an economically important vegetable crop in the Solanaceae family, with extensive diversity among landraces and close relatives. Here, we report a high-quality reference genome for the eggplant inbred line HQ-1315 (S. melongena-HQ) using a combination of Illumina, Nanopore and 10X genomics sequencing technologies and Hi-C technology for genome assembly. The assembled genome has a total size of ~1.17 Gb and 12 chromosomes, with a contig N50 of 5.26 Mb, consisting of 36,582 protein-coding genes. Repetitive sequences comprise 70.09% (811.14 Mb) of the eggplant genome, most of which are long terminal repeat (LTR) retrotransposons (65.80%), followed by long interspersed nuclear elements (LINEs, 1.54%) and DNA transposons (0.85%). The S. melongena-HQ eggplant genome carries a total of 563 accession-specific gene families containing 1009 genes. In total, 73 expanded gene families (892 genes) and 34 contraction gene families (114 genes) were functionally annotated. Comparative analysis of different eggplant genomes identified three types of variations, including single-nucleotide polymorphisms (SNPs), insertions/deletions (indels) and structural variants (SVs). Asymmetric SV accumulation was found in potential regulatory regions of protein-coding genes among the different eggplant genomes. Furthermore, we performed QTL-seq for eggplant fruit length using the S. melongena-HQ reference genome and detected a QTL interval of 71.29-78.26 Mb on chromosome E03. The gene Smechr0301963, which belongs to the SUN gene family, is predicted to be a key candidate gene for eggplant fruit length regulation. Moreover, we anchored a total of 210 linkage markers associated with 71 traits to the eggplant chromosomes and finally obtained 26 QTL hotspots. The eggplant HQ-1315 genome assembly can be accessed at http://eggplant-hq.cn. In conclusion, the eggplant genome presented herein provides a global view of genomic divergence at the whole-genome level and powerful tools for the identification of candidate genes for important traits in eggplant.

16.
Plants (Basel) ; 9(7)2020 Jul 20.
Artigo em Inglês | MEDLINE | ID: mdl-32698415

RESUMO

Plant heat shock factors (Hsfs) play crucial roles in various environmental stress responses. Eggplant (Solanum melongena L.) is an agronomically important and thermophilic vegetable grown worldwide. Although the functions of Hsfs under environmental stress conditions have been characterized in the model plant Arabidopsis thaliana and tomato, their roles in responding to various stresses remain unclear in eggplant. Therefore, we characterized the eggplant SmeHsf family and surveyed expression profiles mediated by the SmeHsfs under various stress conditions. Here, using reported Hsfs from other species as queries to search SmeHsfs in the eggplant genome and confirming the typical conserved domains, we identified 20 SmeHsf genes. The SmeHsfs were further classified into 14 subgroups on the basis of their structure. Additionally, quantitative real-time PCR revealed that SmeHsfs responded to four stresses-cold, heat, salinity and drought-which indicated that SmeHsfs play crucial roles in improving tolerance to various abiotic stresses. The expression pattern of SmeHsfA6b exhibited the most immediate response to the various environmental stresses, except drought. The genome-wide identification and abiotic stress-responsive expression pattern analysis provide clues for further analysis of the roles and regulatory mechanism of SmeHsfs under environmental stresses.

17.
Front Genet ; 11: 178, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-32218801

RESUMO

Eggplant (Solanum melongena; 2n = 24) is an economically important fruit crop of the family Solanaceae that was domesticated in India and Southeast Asia. Construction of a high-resolution genetic map and map-based gene mining in eggplant have lagged behind other crops within the family such as tomato and potato. In this study, we conducted high-throughput single nucleotide polymorphism (SNP) discovery in the eggplant genome using specific length amplified fragment (SLAF) sequencing and constructed a high-density genetic map for the quantitative trait locus (QTL) analysis of multiple traits. An interspecific F2 population of 121 individuals was developed from the cross between cultivated eggplant "1836" and the wild relative S. linnaeanum "1809." Genomic DNA extracted from parental lines and the F2 population was subjected to high-throughput SLAF sequencing. A total of 111.74 Gb of data and 487.53 million pair-end reads were generated. A high-resolution genetic map containing 2,122 SNP markers and 12 linkage groups was developed for eggplant, which spanned 1530.75 cM, with an average distance of 0.72 cM between adjacent markers. A total of 19 QTLs were detected for stem height and fruit and leaf morphology traits of eggplant, explaining 4.08-55.23% of the phenotypic variance. These QTLs were distributed on nine linkage groups (LGs), but not on LG2, 4, and 9. The number of SNPs ranged from 2 to 11 within each QTL, and the genetic interval varied from 0.15 to 10.53 cM. Overall, the results establish a foundation for the fine mapping of complex QTLs, candidate gene identification, and marker-assisted selection of favorable alleles in eggplant breeding.

18.
Sci Rep ; 9(1): 6937, 2019 05 06.
Artigo em Inglês | MEDLINE | ID: mdl-31061443

RESUMO

The leucine-rich repeat receptor-like protein kinase (LRR-RLK) plays an important role in plant development and disease defence. Although genome-wide studies of LRR-RLKs have been performed in several species, a comprehensive analysis, including evolutionary, structural and expressional analyses and their relationships to function, has not been carried out in the radish (Raphanus sativus L.). In this study, we identified 292 LRR-RLK genes in the R. sativus genome and classified them into 23 subgroups. The subgroups containing genes involved in defence were more likely to evolve from tandem duplication rather than whole genome triplication (WGT), had lower expression profiles and were expressed in fewer tissues than the subgroups related to development. Gene structures and conserved domains did not differ in the defence-related or development-related subgroups, but they were distinct in each subgroup. This study sheds light on the evolutionary and expressional relationships with the functions of R. sativus LRR-RLKs and provides an integrated framework for additional investigation into these functions.


Assuntos
Evolução Molecular , Regulação da Expressão Gênica de Plantas , Família Multigênica , Proteínas Serina-Treonina Quinases/genética , Proteínas/genética , Raphanus/genética , Mapeamento Cromossômico , Sequência Conservada , Genoma de Planta , Genômica/métodos , Proteínas de Repetições Ricas em Leucina , Motivos de Nucleotídeos , Filogenia , Proteínas Serina-Treonina Quinases/química , Proteínas/química
19.
Sci Rep ; 9(1): 14544, 2019 10 10.
Artigo em Inglês | MEDLINE | ID: mdl-31601970

RESUMO

Circular RNA (circRNA) is a newly discovered non-coding RNA, which play significant roles in the function and transcriptional regulation of microRNA. To date, in Chinese cabbage, the functional characteristic of circRNAs in response to calcium deficiency-induced tip-burn have not been reported. In this study, 730 circRNAs were isolated from Chinese cabbage leaves, of which 23 and 22 were differentially expressed in different calcium deficiency stages compared with the control. Forty-six host genes of the differentially expressed circRNAs were identified, and one circRNA was found to act as miRNAs sponges. Based on the functional analysis of host genes and target mRNAs of the corresponding miRNAs, the identified circRNAs might participated in response to stimulus, electron carrier activity, ATPase activity, cell wall metabolism, transcription factors and plant hormone signal transduction. ABF2, a positive regulator of the abiotic stress response in the abscisic acid (ABA) pathway, may play a role in calcium deficiency tolerance through a circRNA regulatory pathway. Correspondingly, the concentration of ABA is also increased during the Ca2+ deficiency stress. Our results suggest that circRNAs participate in a broad range of biological processes and physiological functions in the response to calcium deficiency-induced tip-burn and provide a basis for further studies of the biological roles that circRNAs play in the plant stress response.


Assuntos
Brassica rapa/genética , Cálcio/deficiência , RNA Circular/genética , Transcriptoma , Ácido Abscísico , Adenosina Trifosfatases/metabolismo , Perfilação da Expressão Gênica , Regulação da Expressão Gênica de Plantas , Genes de Plantas , MicroRNAs/genética , Doenças das Plantas/genética , Folhas de Planta/metabolismo , RNA de Plantas/genética , Estresse Fisiológico , Transcrição Gênica
20.
Int J Genomics ; 2019: 7924383, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-31211132

RESUMO

Eggplant (Solanum melongena L.) is an economically and nutritionally important fruit crop of the Solanaceae family, which was domesticated in India and southern China. However, the genome regions subjected to selective sweeps in eggplant remain unknown. In the present study, we performed comparative transcriptome analysis of cultivated and wild eggplant species with emphasis on the selection pattern during domestication. In total, 44,073 (S. sisymbriifolium) to 58,677 (S. melongena cultivar S58) unigenes were generated for the six eggplant accessions with total lengths of 36.6-46 Mb. The orthologous genes were assessed using the ratio of nonsynonymous (K a) to synonymous (K s) nucleotide substitutions to characterize selective patterns during eggplant domestication. We identified 19 genes under positive selection across the phylogeny that were classified into four groups. The gene (OG12205) under positive selection was possibly associated with fruit-related traits in eggplant, which may have resulted from human manipulation. Eight positive selected genes were potentially involved in stress tolerance or disease resistance, suggesting that environmental changes and biotic stresses were important selective pressures in eggplant domestication. Taken together, our results shed light on the effects of artificial and natural selection on the transcriptomes of eggplant and its wild relatives. Identification of the selected genes will facilitate the understanding of genetic architecture of domesticated-related traits and provide resources for resistant breeding in eggplant.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA