Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 159
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Med Res Rev ; 38(4): 1031-1072, 2018 07.
Artigo em Inglês | MEDLINE | ID: mdl-28682469

RESUMO

The A3 adenosine receptor (A3 AR) subtype is a novel, promising therapeutic target for inflammatory diseases, such as rheumatoid arthritis (RA) and psoriasis, as well as liver cancer. A3 AR is coupled to inhibition of adenylyl cyclase and regulation of mitogen-activated protein kinase (MAPK) pathways, leading to modulation of transcription. Furthermore, A3 AR affects functions of almost all immune cells and the proliferation of cancer cells. Numerous A3 AR agonists, partial agonists, antagonists, and allosteric modulators have been reported, and their structure-activity relationships (SARs) have been studied culminating in the development of potent and selective molecules with drug-like characteristics. The efficacy of nucleoside agonists may be suppressed to produce antagonists, by structural modification of the ribose moiety. Diverse classes of heterocycles have been discovered as selective A3 AR blockers, although with large species differences. Thus, as a result of intense basic research efforts, the outlook for development of A3 AR modulators for human therapeutics is encouraging. Two prototypical selective agonists, N6-(3-Iodobenzyl)adenosine-5'-N-methyluronamide (IB-MECA; CF101) and 2-chloro-N6-(3-iodobenzyl)-adenosine-5'-N-methyluronamide (Cl-IB-MECA; CF102), have progressed to advanced clinical trials. They were found safe and well tolerated in all preclinical and human clinical studies and showed promising results, particularly in psoriasis and RA, where the A3 AR is both a promising therapeutic target and a biologically predictive marker, suggesting a personalized medicine approach. Targeting the A3 AR may pave the way for safe and efficacious treatments for patient populations affected by inflammatory diseases, cancer, and other conditions.


Assuntos
Agonistas do Receptor A3 de Adenosina/farmacologia , Artrite Reumatoide/tratamento farmacológico , Carcinoma Hepatocelular/tratamento farmacológico , Inflamação/tratamento farmacológico , Neoplasias Hepáticas/tratamento farmacológico , Psoríase/tratamento farmacológico , Receptor A3 de Adenosina/metabolismo , Sítio Alostérico , Animais , Ensaios Clínicos como Assunto , Cristalografia por Raios X , Humanos , Sistema Imunitário , Camundongos , Simulação de Dinâmica Molecular , Ratos , Relação Estrutura-Atividade
2.
Bioorg Chem ; 80: 361-374, 2018 10.
Artigo em Inglês | MEDLINE | ID: mdl-29986184

RESUMO

Many natural and synthetic substances are known to interfere with the dynamic assembly of tubulin, preventing the formation of microtubules. In our search for potent and selective antitumor agents, a novel series of 1-(3',4',5'-trimethoxybenzoyl)-5-amino-1,2,4-triazoles were synthesized. The compounds had different heterocycles, including thiophene, furan or the three isomeric pyridines, and they possessed a phenyl ring bearing electron-releasing or electron-withdrawing substituents at the 3-position of the 5-amino-1,2,4-triazole system. Most of the twenty-two tested compounds showed moderate to potent antiproliferative activities against a panel of solid tumor and leukemic cell lines, with four (5j, 5k, 5o and 5p) showing strong antiproliferative activity (IC50 < 1 µM) against selected cancer cells. Among them, several molecules preferentially inhibited the proliferation of leukemic cell lines, showing IC50 values 2-100-fold lower for Jurkat and RS4;11 cells than those for the three lines derived from solid tumors (HeLa, HT-29 and MCF-7 cells). Compound 5k strongly inhibited tubulin assembly, with an IC50 value of 0.66 µM, half that obtained in simultaneous experiments with CA-4 (IC50 = 1.3 µM).


Assuntos
Desenho de Fármacos , Triazóis/química , Moduladores de Tubulina/síntese química , Tubulina (Proteína)/metabolismo , Apoptose/efeitos dos fármacos , Sítios de Ligação , Linhagem Celular Tumoral , Proliferação de Células/efeitos dos fármacos , Colchicina/química , Colchicina/metabolismo , Ensaios de Seleção de Medicamentos Antitumorais , Pontos de Checagem da Fase G2 do Ciclo Celular/efeitos dos fármacos , Humanos , Pontos de Checagem da Fase M do Ciclo Celular/efeitos dos fármacos , Simulação de Dinâmica Molecular , Ligação Proteica , Estrutura Terciária de Proteína , Relação Estrutura-Atividade , Termodinâmica , Triazóis/metabolismo , Triazóis/farmacologia , Tubulina (Proteína)/química , Moduladores de Tubulina/metabolismo , Moduladores de Tubulina/farmacologia
3.
J Enzyme Inhib Med Chem ; 33(1): 727-742, 2018 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-29620429

RESUMO

The combination of two pharmacophores into a single molecule represents one of the methods that can be adopted for the synthesis of new anticancer molecules. To investigate the influence of the position of the pyridine nitrogen on biological activity, two different series of α-bromoacryloylamido indolyl pyridinyl propenones 3a-h and 4a-d were designed and synthesized by a pharmacophore hybridization approach and evaluated for their antiproliferative activity against a panel of six human cancer cell lines. These hybrid molecules were prepared to combine the α-bromoacryloyl moiety with two series of indole-inspired chalcone analogues, possessing an indole derivative and a 3- or 4-pyridine ring, respectively, linked on either side of 2-propen-1-one system. The structure-activity relationship was also investigated by the insertion of alkyl or benzyl moieties at the N-1 position of the indole nucleus. We found that most of the newly synthesized displayed high antiproliferative activity against U-937, MOLT-3, K-562, and NALM-6 leukaemia cell lines, with one-digit to double-digit nanomolar IC50 values. The antiproliferative activities of 3-pyridinyl derivatives 3f-h revealed that N-benzyl indole analogues generally exhibited lower activity compared to N-H or N-alkyl derivatives 3a-b and 3c-e, respectively. Moreover, cellular mechanism studies elucidated that compound 4a induced apoptosis along with a decrease of mitochondrial membrane potential and activated caspase-3 in a concentration-dependent manner.


Assuntos
Antineoplásicos/farmacologia , Apoptose/efeitos dos fármacos , Indóis/farmacologia , Piridinas/farmacologia , Antineoplásicos/síntese química , Antineoplásicos/química , Proliferação de Células/efeitos dos fármacos , Chalcona/análogos & derivados , Chalcona/síntese química , Chalcona/química , Chalcona/farmacologia , Relação Dose-Resposta a Droga , Ensaios de Seleção de Medicamentos Antitumorais , Humanos , Indóis/síntese química , Indóis/química , Estrutura Molecular , Piridinas/síntese química , Piridinas/química , Relação Estrutura-Atividade , Células Tumorais Cultivadas
4.
Pharmacol Rev ; 67(1): 74-102, 2015.
Artigo em Inglês | MEDLINE | ID: mdl-25387804

RESUMO

By general consensus, the omnipresent purine nucleoside adenosine is considered a major regulator of local tissue function, especially when energy supply fails to meet cellular energy demand. Adenosine mediation involves activation of a family of four G protein-coupled adenosine receptors (ARs): A(1), A(2)A, A(2)B, and A(3). The A(3) adenosine receptor (A(3)AR) is the only adenosine subtype to be overexpressed in inflammatory and cancer cells, thus making it a potential target for therapy. Originally isolated as an orphan receptor, A(3)AR presented a twofold nature under different pathophysiologic conditions: it appeared to be protective/harmful under ischemic conditions, pro/anti-inflammatory, and pro/antitumoral depending on the systems investigated. Until recently, the greatest and most intriguing challenge has been to understand whether, and in which cases, selective A(3) agonists or antagonists would be the best choice. Today, the choice has been made and A(3)AR agonists are now under clinical development for some disorders including rheumatoid arthritis, psoriasis, glaucoma, and hepatocellular carcinoma. More specifically, the interest and relevance of these new agents derives from clinical data demonstrating that A(3)AR agonists are both effective and safe. Thus, it will become apparent in the present review that purine scientists do seem to be getting closer to their goal: the incorporation of adenosine ligands into drugs with the ability to save lives and improve human health.


Assuntos
Adenosina/metabolismo , Receptor A3 de Adenosina/metabolismo , Transdução de Sinais/efeitos dos fármacos , Agonistas do Receptor A3 de Adenosina/uso terapêutico , Antagonistas do Receptor A3 de Adenosina/uso terapêutico , Animais , Anti-Inflamatórios/uso terapêutico , Antineoplásicos/uso terapêutico , Desenho de Fármacos , História do Século XX , Humanos , Ligantes , Terapia de Alvo Molecular , Receptor A3 de Adenosina/efeitos dos fármacos , Receptor A3 de Adenosina/história
5.
Med Res Rev ; 37(4): 936-983, 2017 07.
Artigo em Inglês | MEDLINE | ID: mdl-27976413

RESUMO

Transient receptor potential vanilloid 1 (TRPV1) is an ion channel expressed on sensory neurons triggering an influx of cations. TRPV1 receptors function as homotetramers responsive to heat, proinflammatory substances, lipoxygenase products, resiniferatoxin, endocannabinoids, protons, and peptide toxins. Its phosphorylation increases sensitivity to both chemical and thermal stimuli, while desensitization involves a calcium-dependent mechanism resulting in receptor dephosphorylation. TRPV1 functions as a sensor of noxious stimuli and may represent a target to avoid pain and injury. TRPV1 activation has been associated to chronic inflammatory pain and peripheral neuropathy. Its expression is also detected in nonneuronal areas such as bladder, lungs, and cochlea where TRPV1 activation is responsible for pathology development of cystitis, asthma, and hearing loss. This review offers a comprehensive overview about TRPV1 receptor in the pathophysiology of chronic pain, epilepsy, cough, bladder disorders, diabetes, obesity, and hearing loss, highlighting how drug development targeting this channel could have a clinical therapeutic potential. Furthermore, it summarizes the advances of medicinal chemistry research leading to the identification of highly selective TRPV1 antagonists and their analysis of structure-activity relationships (SARs) focusing on new strategies to target this channel.


Assuntos
Capsaicina/análogos & derivados , Canais de Cátion TRPV/química , Canais de Cátion TRPV/farmacologia , Animais , Capsaicina/química , Capsaicina/farmacologia , Química Farmacêutica , Humanos , Relação Estrutura-Atividade , Canais de Cátion TRPV/antagonistas & inibidores , Canais de Cátion TRPV/metabolismo
6.
Med Res Rev ; 35(4): 790-848, 2015 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-25821194

RESUMO

Growing evidence emphasizes that the purine nucleoside adenosine plays an active role as a local regulator in different pathologies. Adenosine is a ubiquitous nucleoside involved in various physiological and pathological functions by stimulating A1 , A2A , A2B , and A3 adenosine receptors (ARs). At the present time, the role of A2A ARs is well known in physiological conditions and in a variety of pathologies, including inflammatory tissue damage and neurodegenerative disorders. In particular, the use of selective A2A antagonists has been reported to be potentially useful in the treatment of Parkinson's disease (PD). In this review, A2A AR signal transduction pathways, together with an analysis of the structure-activity relationships of A2A antagonists, and their corresponding pharmacological roles and therapeutic potential have been presented. The initial results from an emerging polypharmacological approach are also analyzed. This approach is based on the optimization of the affinity and/or functional activity of the examined compounds toward multiple targets, such as A1 /A2A ARs and monoamine oxidase-B (MAO-B), both closely implicated in the pathogenesis of PD.


Assuntos
Antagonistas do Receptor A2 de Adenosina/história , Antagonistas do Receptor A2 de Adenosina/uso terapêutico , Antagonistas do Receptor A2 de Adenosina/química , Animais , Ensaios Clínicos como Assunto , Avaliação Pré-Clínica de Medicamentos , História do Século XX , Humanos , Multimerização Proteica , Transdução de Sinais/efeitos dos fármacos
7.
Bioorg Med Chem ; 22(1): 148-66, 2014 Jan 01.
Artigo em Inglês | MEDLINE | ID: mdl-24332652

RESUMO

2-Amino-3-benzoyl thiophenes have been widely reported to act as allosteric enhancers at the A1 adenosine receptor. Their activity can be increased considerably by appropriate substitutions at the 4- and 5-positions of the thiophene ring. Substituent size at the thiophene C-4 position seemed to be a factor closely related to activity, with the 4-neopentyl (2,2-dimethylpropyl) substitution showing the greatest enhanced activity. A wide series of 2-amino-3-aroyl-4-neopentylthiophene derivatives with general structure 3, characterized by the presence of different substituents (bromine, aryl and heteroaryl) at the 5-position of the thiophene ring, have been identified as potent AEs at the A1AR. With only one exception, all of the synthesized compounds proved to be superior to the reference compound PD 81,723 in a functional assay. Derivatives 3p, 3u, 3am, 3ap and 3ar were the most active compounds in binding (saturation and competition) and functional cAMP studies, being able to potentiate agonist [(3)H]CCPA binding to the A1 receptor.


Assuntos
Receptor A1 de Adenosina/metabolismo , Tiofenos/síntese química , Tiofenos/metabolismo , Regulação Alostérica , Animais , Células CHO , Cricetinae , Cricetulus , Humanos , Relação Estrutura-Atividade , Tiofenos/química
8.
Bioorg Med Chem ; 22(18): 5097-109, 2014 Sep 15.
Artigo em Inglês | MEDLINE | ID: mdl-24398384

RESUMO

In search of new compounds with strong antiproliferative activity and simple molecular structure, we designed a novel series of agents based on the 2-amino-3-alkoxycarbonyl/cyano-5-arylethylthiophene scaffold. The presence of the ethyl spacer between the 2',5'-dimethoxyphenyl and the 5-position of the thiophene ring, as well as the number and location of methoxy substitutents on the phenyl ring, played a profound role in affecting the antiproliferative activity. Among the synthesized compounds, we identified the 2-amino-3-cyano-[2-(2,5-dimethoxyphenyl)ethyl] thiophene 2c as the most promising derivative against a wide panel of cancer cell lines (IC50=17-130 nM). The antiproliferative activity of this compound appears to correlate well with its ability to inhibit tubulin assembly and the binding of colchicine to tubulin. Moreover 2c, as determined by flow cytometry, strongly induced arrest in the G2/M phase of the cell cycle, and annexin-V and propidium iodide staining indicate that cell death proceeds through an apoptotic mechanism that follows the intrinsic mitochondrial pathway.


Assuntos
Antineoplásicos/farmacologia , Desenho de Fármacos , Tiofenos/farmacologia , Animais , Antineoplásicos/síntese química , Antineoplásicos/química , Apoptose/efeitos dos fármacos , Ciclo Celular/efeitos dos fármacos , Linhagem Celular Tumoral , Proliferação de Células/efeitos dos fármacos , Relação Dose-Resposta a Droga , Ensaios de Seleção de Medicamentos Antitumorais , Células HeLa , Humanos , Camundongos , Modelos Moleculares , Estrutura Molecular , Polimerização/efeitos dos fármacos , Espécies Reativas de Oxigênio/metabolismo , Relação Estrutura-Atividade , Tiofenos/síntese química , Tiofenos/química , Tubulina (Proteína)/metabolismo
9.
Angiogenesis ; 16(3): 647-62, 2013 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-23456551

RESUMO

TR-644 is a novel combretastatin A-4 (CA-4) analogue endowed with potent microtubule depolymerizing activity superior to that of the lead compound and it also has high affinity to colchicines binding site of tubulin. We tested TR-644 anti-angiogenic effects in human umbilical endothelial cells (HUVEC). It showed no significant effects on the growth of HUVEC cells at concentrations below 1,000 nM, but at much lower concentrations (10-100 nM) it induced inhibition of capillary tube formation, inhibition of endothelial cell migration and affected endothelial cell morphology as demonstrated by the disruption of the microtubule network. TR-644 also increased permeability of HUVEC cells in a time dependent manner. The molecular mechanism for the anti-vascular activity of TR-644 was investigated in detail. TR-644 caused G2/M arrest in endothelial cells and this effect correlated with downregulation of the expression of Cdc25C and Cdc2(Tyr15). Moreover TR-644 inhibited VEGF-induced phosphorylation of VE-cadherin but did not prevent the VEGF-induced phosphorylation of FAK. In chick chorioallantoic membrane in vivo assay, TR-644 (0.1-1.0 pmol/egg) efficiently counteracted the strong angiogenic response induced by FGF. Also CA-4, used as reference compound, caused an antagonistic effect, but in contrast, it induced per se, a remarkable angiogenic response probably due to an inflammatory reaction in the site of treatment. In a mice allogenic tumor model, immunohistochemical staining of tumors with anti-CD31 antibody showed that TR-644 significantly reduced the number of vessel, after 24 h from the administration of a single dose (30 mg/Kg).


Assuntos
Inibidores da Angiogênese/farmacologia , Células Endoteliais/efeitos dos fármacos , Proteínas Associadas aos Microtúbulos/farmacologia , Neovascularização Fisiológica/efeitos dos fármacos , Tiazóis/farmacologia , Animais , Western Blotting , Proteína Quinase CDC2 , Pontos de Checagem do Ciclo Celular/efeitos dos fármacos , Permeabilidade da Membrana Celular/efeitos dos fármacos , Movimento Celular/efeitos dos fármacos , Embrião de Galinha , Ensaio de Unidades Formadoras de Colônias , Ciclina B/metabolismo , Quinases Ciclina-Dependentes , Citometria de Fluxo , Imunofluorescência , Quinase 1 de Adesão Focal/metabolismo , Células Endoteliais da Veia Umbilical Humana , Humanos , Imuno-Histoquímica , Estrutura Molecular , Fosforilação/efeitos dos fármacos , Tiazóis/química , Fosfatases cdc25/metabolismo
11.
Drug Discov Today Technol ; 10(2): e285-96, 2013.
Artigo em Inglês | MEDLINE | ID: mdl-24050280

RESUMO

Allosteric modulators of adenosine receptors represent an alternative to direct-acting adenosine agonists and nucleoside uptake blockers, preferably those can selectively modulate the response to adenosine in only those organs or localized areas of a given organ in which production of adenosine is increased. Allosteric enhancers at the adenosine A1 receptor have received attention as anti-arrhythmic cardiac agents, and, more recently, as anti-lipolytic agents. In addition, this class of compounds has therapeutic potential as analgesics and neuroprotective agents.


Assuntos
Receptor A1 de Adenosina/metabolismo , Regulação Alostérica , Animais , Química Farmacêutica , Humanos
12.
Bioorg Med Chem ; 20(2): 1046-59, 2012 Jan 15.
Artigo em Inglês | MEDLINE | ID: mdl-22204739

RESUMO

The discovery and development of adenosine receptor antagonists have represented for years an attractive field of research from the perspective of identifying new drugs for the treatment of widespread disorders such as inflammation, asthma and Parkinson's disease. The present work can be considered as an extension of our structure-activity relationship studies on the pyrazolo[4,3-e][1,2,4]triazolo[1,5-c]pyrimidine (PTP) nucleus, extensively investigated by us as a useful template, in particular, for the identification of A(2A) and A(3) adenosine receptor antagonists. In order to explore the role of the nitrogen at the 7-position, we performed a new synthetic strategy for the preparation of pyrrolo[3,4-e][1,2,4]triazolo[1,5-c]pyrimidine derivatives which can be considered as 7-deaza analogues of the parent PTPs. We also synthesised a novel series of pyrazolo[3,4-e][1,2,4]triazolo[1,5-c]pyrimidines as junction isomers of the reference compounds. In both cases we obtained some examples of potent antagonists (K(i) in the low nanomolar range) with variable selectivity profiles in relation to the nature of substituents introduced at the C(5)-, N(8)- and/or N(9)-positions. The pyrrolo-triazolo-pyrimidine derivative 9b appeared to be a potent A(3) adenosine receptor antagonist (K(i)=10 nM) with good selectivity over hA(1) (74-fold) and hA(2A) (20-fold) adenosine receptors combined with low activity at the hA(2B) subtype (IC(50)=906 nM). Moreover, some examples of high-affinity A(1)/A(2A) dual antagonists have been identified in both series. This work constitutes a new and important contribution for the comprehension of the interaction between PTPs and adenosine receptors.


Assuntos
Antagonistas de Receptores Purinérgicos P1/química , Pirazóis/química , Pirimidinas/química , Triazóis/química , Humanos , Ligação Proteica/efeitos dos fármacos , Antagonistas de Receptores Purinérgicos P1/síntese química , Antagonistas de Receptores Purinérgicos P1/farmacologia , Pirimidinas/síntese química , Pirimidinas/farmacologia , Receptor A2A de Adenosina/química , Receptor A2A de Adenosina/metabolismo , Receptor A3 de Adenosina/química , Receptor A3 de Adenosina/metabolismo , Relação Estrutura-Atividade
13.
Bioorg Med Chem ; 20(24): 7083-94, 2012 Dec 15.
Artigo em Inglês | MEDLINE | ID: mdl-23117171

RESUMO

Antitumor agents that bind to tubulin and disrupt microtubule dynamics have attracted considerable attention in the last few years. To extend our knowledge of the thiazole ring as a suitable mimic for the cis-olefin present in combretastatin A-4, we fixed the 3,4,5-trimethoxyphenyl at the C4-position of the thiazole core. We found that the substituents at the C2- and C5-positions had a profound effect on antiproliferative activity. Comparing compounds with the same substituents at the C5-position of the thiazole ring, the moiety at the C2-position influenced antiproliferative activities, with the order of potency being NHCH(3) > Me >> N(CH(3))(2). The N-methylamino substituent significantly improved antiproliferative activity on MCF-7 cells with respect to C2-amino counterparts. Increasing steric bulk at the C2-position from N-methylamino to N,N-dimethylamino caused a 1-2 log decrease in activity. The 2-N-methylamino thiazole derivatives 3b, 3d and 3e were the most active compounds as antiproliferative agents, with IC(50) values from low micromolar to single digit nanomolar, and, in addition, they are also active on multidrug-resistant cell lines over-expressing P-glycoprotein. Antiproliferative activity was probably caused by the compounds binding to the colchicines site of tubulin polymerization and disrupting microtubule dynamics. Moreover, the most active compound 3e induced apoptosis through the activation of caspase-2, -3 and -8, but 3e did not cause mitochondrial depolarization.


Assuntos
Antineoplásicos/síntese química , Antineoplásicos/farmacologia , Tiazóis/síntese química , Tiazóis/farmacologia , Antineoplásicos/química , Apoptose/efeitos dos fármacos , Linhagem Celular Tumoral , Colchicina/metabolismo , Células HeLa , Humanos , Microtúbulos/efeitos dos fármacos , Microtúbulos/metabolismo , Modelos Moleculares , Relação Estrutura-Atividade , Tiazóis/química , Tubulina (Proteína)/química , Tubulina (Proteína)/metabolismo
14.
Bioorg Med Chem ; 20(2): 996-1007, 2012 Jan 15.
Artigo em Inglês | MEDLINE | ID: mdl-22182575

RESUMO

In a preliminary article, we reported the potent allosteric enhancer activity at the A(1) adenosine receptor of a small series of 2-amino-3-(4-chlorobenzoyl)-4-[4-(aryl)piperazin-1-yl)methyl]thiophene derivatives bearing electron-withdrawing or electron-releasing groups at the para-position of the phenylpiperazine moiety. In the present study, we report the development of the compounds previously studied by modifying both the number and position of substituents on the phenylpiperazine moiety, aimed at establishing a structure-activity relationship identifying additional compounds with improved activity. The nature and the position of substituents on the phenyl ring tethered to the piperazine seemed to exert a fundamental influence on the allosteric enhancer activity, with the 3,4-difluoro 4i, 3-chloro-4-fluoro 4o, and 4-trifluoromethoxy 4ak derivatives being the most active compounds in binding (saturation and competition experiments) and functional cAMP studies. This study shows that it is also possible to obtain a good separation between allosteric enhancement and antagonistic activity at the A(1) adenosine receptor.


Assuntos
Antagonistas do Receptor A1 de Adenosina/química , Piperazinas/química , Receptor A1 de Adenosina/química , Tiofenos/química , Antagonistas do Receptor A1 de Adenosina/síntese química , Antagonistas do Receptor A1 de Adenosina/farmacologia , Regulação Alostérica , Animais , Células CHO , Cricetinae , Cricetulus , AMP Cíclico/metabolismo , Humanos , Ligação Proteica/efeitos dos fármacos , Receptor A1 de Adenosina/metabolismo , Relação Estrutura-Atividade , Tiofenos/síntese química , Tiofenos/farmacologia
15.
Bioorg Med Chem ; 20(5): 1690-8, 2012 Mar 01.
Artigo em Inglês | MEDLINE | ID: mdl-22325155

RESUMO

The transient receptor potential ankyrin 1 (TRPA1) channel is activated by a series of by-products of oxidative/nitrative stress, produced under inflammatory conditions or in the case of tissue damage, thus generating inflammatory and neuropathic pain and neurogenic inflammatory responses. These findings have identified TRPA1 as an emerging opportunity for the design and synthesis of selective inhibitors as potential analgesic and antiinflammatory agents. Herein we present the synthesis and functional evaluation of a new series of 7-substituted-1,3-dimethyl-1,5-dihydro-pyrrolo[3,2-d]pyrimidine-2,4-dione derivatives designed as TRPA1 antagonists. A small library of compounds has been built by the introduction of differently substituted N(7)-phenylacetamide or N(7)-[4-(substituted-phenyl)-thiazol-2-yl]-acetamide chains. All the synthesized compounds were assayed to evaluate their ability to block acrolein-mediated activation of native human and rat TRPA1 channels employing a fluorometric calcium imaging assay. Our study led us to the identification of compound 3h which showed considerably improved potency (IC(50)=400nM) against human TRPA1 with regard to some of the most representative antagonists previously reported and integrated in our screening program as reference compounds. In addition, 3h proved to maintain its efficacy toward rTRPA1, which designates it as a possible candidate for future evaluation of in vivo efficacy in rodent animal model of inflammatory and neuropathic pain.


Assuntos
Analgésicos/química , Anti-Inflamatórios não Esteroides/química , Proteínas do Tecido Nervoso/antagonistas & inibidores , Pirimidinas/química , Pirimidinas/farmacologia , Canais de Cátion TRPC/antagonistas & inibidores , Canais de Potencial de Receptor Transitório/antagonistas & inibidores , Analgésicos/síntese química , Analgésicos/farmacologia , Animais , Anti-Inflamatórios não Esteroides/síntese química , Anti-Inflamatórios não Esteroides/farmacologia , Canais de Cálcio , Humanos , Inflamação/tratamento farmacológico , Masculino , Dor/tratamento farmacológico , Pirimidinas/síntese química , Ratos , Ratos Sprague-Dawley , Canal de Cátion TRPA1
16.
J Clin Invest ; 118(7): 2574-82, 2008 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-18568077

RESUMO

Cigarette smoke (CS) inhalation causes an early inflammatory response in rodent airways by stimulating capsaicin-sensitive sensory neurons that express transient receptor potential cation channel, subfamily V, member 1 (TRPV1) through an unknown mechanism that does not involve TRPV1. We hypothesized that 2 alpha,beta-unsaturated aldehydes present in CS, crotonaldehyde and acrolein, induce neurogenic inflammation by stimulating TRPA1, an excitatory ion channel coexpressed with TRPV1 on capsaicin-sensitive nociceptors. We found that CS aqueous extract (CSE), crotonaldehyde, and acrolein mobilized Ca2+ in cultured guinea pig jugular ganglia neurons and promoted contraction of isolated guinea pig bronchi. These responses were abolished by a TRPA1-selective antagonist and by the aldehyde scavenger glutathione but not by the TRPV1 antagonist capsazepine or by ROS scavengers. Treatment with CSE or aldehydes increased Ca2+ influx in TRPA1-transfected cells, but not in control HEK293 cells, and promoted neuropeptide release from isolated guinea pig airway tissue. Furthermore, the effect of CSE and aldehydes on Ca2+ influx in dorsal root ganglion neurons was abolished in TRPA1-deficient mice. These data identify alpha,beta-unsaturated aldehydes as the main causative agents in CS that via TRPA1 stimulation mediate airway neurogenic inflammation and suggest a role for TRPA1 in the pathogenesis of CS-induced diseases.


Assuntos
Acroleína/farmacologia , Aldeídos/farmacologia , Inflamação Neurogênica/fisiopatologia , Nicotiana/química , Fumaça , Canais de Potencial de Receptor Transitório/fisiologia , Acroleína/análogos & derivados , Animais , Anquirinas , Peptídeo Relacionado com Gene de Calcitonina/metabolismo , Canais de Cálcio/genética , Canais de Cálcio/fisiologia , Sinalização do Cálcio/efeitos dos fármacos , Sinalização do Cálcio/fisiologia , Linhagem Celular , Gânglios Espinais/citologia , Cobaias , Humanos , Pulmão/efeitos dos fármacos , Pulmão/metabolismo , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Inflamação Neurogênica/induzido quimicamente , Inflamação Neurogênica/metabolismo , Neurônios Aferentes/efeitos dos fármacos , Neurônios Aferentes/metabolismo , Ratos , Substância P/metabolismo , Canal de Cátion TRPA1 , Canais de Cátion TRPC , Canais de Potencial de Receptor Transitório/agonistas , Canais de Potencial de Receptor Transitório/antagonistas & inibidores , Canais de Potencial de Receptor Transitório/deficiência , Canais de Potencial de Receptor Transitório/genética
17.
Bioorg Med Chem Lett ; 21(9): 2746-51, 2011 May 01.
Artigo em Inglês | MEDLINE | ID: mdl-21146985

RESUMO

Microtubules are dynamic structures that play a crucial role in cellular division and are recognized as an important target for cancer therapy. In search of new compounds with strong antiproliferative activity and simple molecular structure, a new series of 2-amino-3-(3',4',5'-trimethoxybenzoyl)-5-(hetero)aryl ethynyl thiophene derivatives was prepared by the Sonogashira coupling reaction of the corresponding 5-bromothiophenes with several (hetero)aryl acetylenes. When these compounds were analyzed in vitro for their inhibition of cell proliferation, the 2- and 3-thiophenyl acetylene derivatives were the most powerful compounds, both of which exerted cytostatic effects at submicromolar concentrations. In contrast, the presence of a more flexible ethyl chain between the (hetero)aryl and the 5-position of the thiophene ring resulted in significant reduction in activity relative to the 5-(hetero)aryl acetylene substituted derivatives. The effects of a selected series of compounds on cell cycle progression correlated well with their strong antiproliferative activity and inhibition of tubulin polymerization. We found that the antiproliferative effects of the most active compounds were associated with increase of the proportion of cells in the G(2)/M and sub-G(1) phases of the cell cycle.


Assuntos
Antimitóticos/síntese química , Tiofenos/síntese química , Animais , Antimitóticos/química , Antimitóticos/farmacologia , Linhagem Celular Tumoral , Proliferação de Células/efeitos dos fármacos , Feminino , Humanos , Leucemia/tratamento farmacológico , Camundongos , Estrutura Molecular , Relação Estrutura-Atividade , Tiofenos/química , Tiofenos/farmacologia , Neoplasias do Colo do Útero/tratamento farmacológico
18.
J Am Chem Soc ; 132(18): 6425-33, 2010 May 12.
Artigo em Inglês | MEDLINE | ID: mdl-20394365

RESUMO

The study of DNA G-quadruplex stabilizers has enjoyed a great momentum in the late years due to their application as anticancer agents. The recognition of the grooves of these structural motifs is expected to result in a higher degree of selectivity over other DNA structures. Therefore, to achieve an enhanced knowledge on the structural and conformational requisites for quadruplex groove recognition, distamycin A, the only compound for which a pure groove binding has been proven, has been chemically modified. Surprisingly, structural and thermodynamic studies revealed that the absence of Coulombic interactions results in an unprecedented binding position in which both the groove and the 3' end of the DNA are occupied. This further contribution adds another piece to the so far elusive puzzle of the recognition between ligands and DNA quadruplexes and will serve as a platform for a rational design of new groove binders.


Assuntos
DNA/química , DNA/metabolismo , Quadruplex G , Sequência de Bases , Bromo/química , DNA/genética , Distamicinas/química , Distamicinas/metabolismo , Espectroscopia de Ressonância Magnética , Modelos Moleculares , Oligodesoxirribonucleotídeos/química , Oligodesoxirribonucleotídeos/genética , Oligodesoxirribonucleotídeos/metabolismo , Termodinâmica
19.
Bioorg Med Chem Lett ; 20(9): 2733-9, 2010 May 01.
Artigo em Inglês | MEDLINE | ID: mdl-20378350

RESUMO

In a continuing study of hybrid compounds containing the alpha-bromoacryloyl moiety as potential anticancer drugs, we synthesized a novel series of hybrids 4a-h, in which this moiety was linked to a 1,5-diaryl-1,4-pentadien-3-one system. Many of the conjugates prepared (4b, 4c, 4e and 4g) demonstrated pronounced, submicromolar antiproliferative activity against four cancer cell lines. Moreover, compound 4b induced apoptosis through the mitochondrial pathway and activated caspase-3 in a concentration-dependent manner.


Assuntos
Antineoplásicos/síntese química , Chalconas/química , Animais , Antineoplásicos/química , Antineoplásicos/farmacologia , Caspase 3/metabolismo , Linhagem Celular Tumoral , Desenho de Fármacos , Avaliação Pré-Clínica de Medicamentos , Ensaios de Seleção de Medicamentos Antitumorais , Células HeLa , Humanos , Camundongos
20.
Bioorg Med Chem ; 18(14): 5114-22, 2010 Jul 15.
Artigo em Inglês | MEDLINE | ID: mdl-20579891

RESUMO

The central role of microtubules in cell division and mitosis makes them a particularly important target for anticancer agents. On our early publication, we found that a series of 2-(3',4',5'-trimethoxybenzoyl)-3-aminobenzo[b]thiophenes exhibited strong antiproliferative activity in the submicromolar range and significantly arrested cells in the G2-M phase of the cell cycle and induced apoptosis. In order to investigate the importance of the amino group at the 3-position of the benzo[b]thiophene skeleton, the corresponding 3-unsubstituted and methyl derivatives were prepared. A novel series of inhibitors of tubulin polymerization, based on the 2-(3,4,5-trimethoxybenzoyl)-benzo[b]thiophene molecular skeleton with a methoxy substituent at the C-4, C-5, C-6 or C-7 position on the benzene ring, was evaluated for antiproliferative activity against a panel of five cancer cell lines, for inhibition of tubulin polymerization and for cell cycle effects. Replacing the methyl group at the C-3 position resulted in increased activity compared with the corresponding 3-unsubstituted counterpart. The structure-activity relationship established that the best activities were obtained with the methoxy group placed at the C-4, C-6 or C-7 position. Most of these compounds exhibited good growth inhibition activity and arrest K562 cells in the G2-M phase via microtubule depolymerization.


Assuntos
Anisóis/química , Anisóis/farmacologia , Antineoplásicos/química , Antineoplásicos/farmacologia , Tiofenos/química , Tiofenos/farmacologia , Moduladores de Tubulina/química , Moduladores de Tubulina/farmacologia , Tubulina (Proteína)/metabolismo , Animais , Ciclo Celular/efeitos dos fármacos , Linhagem Celular Tumoral , Proliferação de Células/efeitos dos fármacos , Humanos , Modelos Moleculares , Neoplasias/tratamento farmacológico , Ratos , Relação Estrutura-Atividade , Tubulina (Proteína)/química
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA