Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 154
Filtrar
Mais filtros

Base de dados
País/Região como assunto
Tipo de documento
Intervalo de ano de publicação
1.
J Microencapsul ; 41(2): 140-156, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38410930

RESUMO

Oxidative stress (OS) plays a crucial role in disease development. Astaxanthin (ATX), a valuable natural compound, may reduce OS and serve as a treatment for diseases like neurodegenerative disorders and cancer. Nuclear factor-erythroid 2-related factor 2 (Nrf2) regulates antioxidant enzymes and OS management. We evaluated ATX's antioxidant activity via Alg-CS/ATX gel beads in vitro. ATX-encapsulated alginate-chitosan (Alg-CS/ATX) gel beads were synthesized and structurally/morphologically characterized by SEM, FT-IR, and XRD. Their biological effects were examined in human umbilical vein endothelial cells (HUVECs) treated with H2O2 through MTT assay, Annexin V/PI, cell cycle studies, and western blotting. Alg-CS effectively carried ATX, with high capacity and reduced pore size. Alg-CS/ATX displayed an 84% encapsulation efficiency, maintaining stability for 30 days. In vitro studies showed a 1.4-fold faster release at pH 5.4 than at neutral pH, improving ATX's therapeutic potential. HUVECs treated with Alg-CS/ATX showed enhanced viability via increased Nrf2 expression. Alg-CS gel beads exhibit significant potential as a biocompatible vehicle for delivering ATX to combat OS with considerable opportunity for clinical applications.


Assuntos
Quitosana , Humanos , Fator 2 Relacionado a NF-E2 , Peróxido de Hidrogênio , Espectroscopia de Infravermelho com Transformada de Fourier , Estresse Oxidativo , Antioxidantes , Alginatos , Células Endoteliais da Veia Umbilical Humana , Xantofilas
2.
Molecules ; 28(1)2023 Jan 03.
Artigo em Inglês | MEDLINE | ID: mdl-36615606

RESUMO

Magnetic mesoporous silica nanoparticles (MMSNPs) are being widely investigated as multifunctional novel drug delivery systems (DDSs) and play an important role in targeted therapy. Here, magnetic cores were synthesized using the thermal decomposition method. Further, to improve the biocompatibility and pharmacokinetic behavior, mesoporous silica was synthesized using the sol-gel process to coat the magnetic cores. Subsequently, sunitinib (SUN) was loaded into the MMSNPs, and the particles were armed with amine-modified mucin 1 (MUC-1) aptamers. The MMSNPs were characterized using FT-IR, TEM, SEM, electrophoresis gel, DLS, and EDX. MTT assay, flow cytometry analysis, ROS assessment, and mitochondrial membrane potential analysis evaluated the nanoparticles' biological impacts. The physicochemical analysis revealed that the engineered MMSNPs have a smooth surface and spherical shape with an average size of 97.6 nm. The biological in vitro analysis confirmed the highest impacts of the targeted MMSNPs in MUC-1 overexpressing cells (OVCAR-3) compared to the MUC-1 negative MDA-MB-231 cells. In conclusion, the synthesized MMSNP-SUN-MUC-1 nanosystem serves as a unique multifunctional targeted delivery system to combat the MUC-1 overexpressing ovarian cancer cells.


Assuntos
Nanopartículas , Neoplasias Ovarianas , Humanos , Feminino , Sunitinibe , Linhagem Celular Tumoral , Apoptose , Dióxido de Silício/química , Mucina-1/genética , Espectroscopia de Infravermelho com Transformada de Fourier , Nanopartículas/química , Sistemas de Liberação de Medicamentos/métodos , Fenômenos Magnéticos , Porosidade
3.
Appl Microbiol Biotechnol ; 106(17): 5511-5524, 2022 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-35876873

RESUMO

Because of the therapeutical impacts of hydrolytic enzymes in different diseases, in particular malignancies, we aimed to produce a recombinant putative L-glutaminase (GLS ASL-1) from a recently characterized halo-thermotolerant Bacillus sp. SL-1. For this purpose, the glsA gene was identified and efficiently overexpressed in the Origami™ B (DE3) strain. The yield of the purified GLS ASL-1 was ~ 20 mg/L, indicating a significant expression of recombinant enzyme in the Origami. The enzyme activity assay revealed a significant hydrolytic effect of the recombinant GLS ASL-1 on L-asparagine (Asn) (i.e., Km 39.8 µM, kcat 19.9 S-1) with a minimal affinity for L-glutamine (Gln). The GLS ASL-1 significantly suppressed the growth of leukemic Jurkat cells through apoptosis induction (47.5%) in the IC50 dosage of the enzyme. The GLS ASL-1 could also change the Bax/Bcl2 expression ratio, indicating its apoptotic effect on cancer cells. The in silico analysis was conducted to predict structural features related to the histidine-tag exposure in the N- or C-terminal of the recombinant GLS ASL-1. In addition, molecular docking simulation for substrate specificity revealed a greater binding affinity of Asn to the enzyme binding-site residues than Gln, which was confirmed in experimental procedures as well. In conclusion, the current study introduced a recombinant GLS ASL-1 with unique functional and structural features, highlighting its potential pharmaceutical and medical importance. GLS ASL-1 represents the first annotated enzyme from Bacillus with prominent asparaginase activity, which can be considered for developing alternative enzymes in therapeutic applications. KEY POINTS: • Hydrolytic enzymes have critical applications in different types of human malignancies. • A recombinant L-glutaminase (GLS ASL-1) was produced from halo-thermotolerant Bacillus sp. SL-1. • GLS ASL-1 displayed a marked hydrolytic activity on L-asparagine compared to the L-glutamine. • GLS ASL-1 with significant substrate promiscuity may be an alternative for developing novel pharmaceuticals.


Assuntos
Bacillus , Neoplasias , Asparaginase , Asparagina , Glutaminase , Glutamina , Humanos , Simulação de Acoplamento Molecular
4.
J Microencapsul ; 39(4): 394-408, 2022 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-35748819

RESUMO

The use of magnetic nanoparticles (MNPs) in biomedical applications has been wildly opted due to their unique properties. Here, we designed MNPs loaded with erlotinib (ERL/SPION-Val-PEG) and conjugated them with anti-mucin16 (MUC16) aptamer to introduce new image-guided nanoparticles (NPs) for targeted drug delivery as well as non-invasive magnetic resonance imaging (MRI) contrast agents. Also, the combination of our nanosystem (NS) along with L-Asparaginase (L-ASPN) led to synergistic effects in terms of reducing cell viability in ovarian cancer cells, which could suggest a novel combination therapy. The mean size of our NS was about 63.4 ± 3.4 nm evaluated by DLS analysis and its morphology was confirmed using TEM. Moreover, the functional groups, as well as magnetic properties of our NS, were examined by FT-IR and VSM tests, respectively. The loading efficacy of erlotinib on MNPs was about 80% and its release reached 70.85% over 7 days in the pH value of 5.4. The MR images and flow cytometry results revealed that the cellular uptake of ERL/SPION-Val-PEG-MUC16 NPs in cells with MUC16 overexpression was considerably higher than unarmed NPs. In addition, T2-weight MR images of ovarian cancer-bearing mice indicated significant signal intensity changes at the tumour site 4 h after intravenous injection compared to the non-target MNPs. Our data suggest ERL/SPION-Val-PEG NPs as an image-guided co-drug delivery system for ovarian cancer.


Assuntos
Nanopartículas de Magnetita , Nanopartículas , Neoplasias Ovarianas , Animais , Asparaginase , Linhagem Celular Tumoral , Sistemas de Liberação de Medicamentos/métodos , Cloridrato de Erlotinib/química , Cloridrato de Erlotinib/farmacologia , Feminino , Humanos , Imageamento por Ressonância Magnética , Nanopartículas de Magnetita/química , Camundongos , Nanopartículas/química , Neoplasias Ovarianas/tratamento farmacológico , Espectroscopia de Infravermelho com Transformada de Fourier
5.
Cell Mol Life Sci ; 77(6): 997-1019, 2020 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-31563999

RESUMO

Systemic administration of chemotherapeutics by nanocarriers (NCs) functionalized with targeting agents provides a localized accumulation of drugs in the target tissues and cells. Advanced nanoscaled medicaments can enter into the tumor microenvironment (TME) and overcome the uniquely dysregulated biological settings of TME, including highly pressurized tumor interstitial fluid in an acidic milieu. Such multimodal nanomedicines seem to be one of the most effective treatment modalities against solid tumors such as colorectal cancer (CRC). To progress and invade, cancer cells overexpress various oncogenes and molecular markers such as epidermal growth factor receptors (EGFRs), which can be exploited for targeted delivery of nanoscaled drug delivery systems (DDSs). In fact, to develop effective personalized multimodal nanomedicines, the type of solid tumor and status of the disease in each patient should be taken into consideration. While the development of such multimodal-targeted nanomedicines is largely dependent on the expression level of oncomarkers, the type of NCs and homing/imaging agents play key roles in terms of their efficient applications. In this review, we provide deep insights into the development of EGFR-targeting nanomedicines and discuss various types of nanoscale DDSs (e.g., organic and inorganic nanoparticles) for targeting of the EGFR-positive solid tumors such as CRC.


Assuntos
Antineoplásicos Imunológicos/administração & dosagem , Neoplasias Colorretais/tratamento farmacológico , Sistemas de Liberação de Medicamentos , Receptores ErbB/antagonistas & inibidores , Nanopartículas/química , Animais , Antineoplásicos Imunológicos/uso terapêutico , Portadores de Fármacos/química , Sistemas de Liberação de Medicamentos/métodos , Humanos , Nanomedicina/métodos
6.
J Microencapsul ; 38(7-8): 472-485, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34511038

RESUMO

AIM: This research aims to develop potential therapeutic nanostructures (NSs) encapsulating metformin (MET) and erlotinib (ER) for combinational therapy in breast cancer. METHODS: The ER and MET, both were loaded on mesoporous silica magnetic nanoparticles conjugated with polyethylene glycol and methotrexate to achieve targeted NSs. The developed NSs were characterised using SEM, DLS, and FTIR. Afterward, MTT, Trypan blue, and DNA extraction assays were operated for biological evaluations in the 2D and 3D MCF-7 cells. RESULTS: Physicochemical approaches indicated the mean diameter of 69.4 nm ± 9.5 (PDI = 0.64), and neutral charge (2 mv) for the developed NSs. MET and ER-loaded NSs exhibited 62.56% ± 4.41 and 67.73% ± 3.03 drug release amount in pH = 5.4, respectively. MTT assay revealed that ER- and MET-loaded NSs had less metabolic activity (≈ 20%) in comparison with non-targeted NSs. CONCLUSION: Overall, our combined ER and MET-loaded targeted NSs result in a synergistic inhibitory impact on MCF-7 cells.


Assuntos
Nanopartículas de Magnetita , Metformina , Nanopartículas , Doxorrubicina , Sistemas de Liberação de Medicamentos , Cloridrato de Erlotinib/farmacologia , Humanos , Células MCF-7 , Metformina/farmacologia , Porosidade , Dióxido de Silício
7.
Med Res Rev ; 40(5): 1833-1870, 2020 09.
Artigo em Inglês | MEDLINE | ID: mdl-32301138

RESUMO

The loss of bone tissue is a striking challenge in orthopedic surgery. Tissue engineering using various advanced biofunctional materials is considered a promising approach for the regeneration and substitution of impaired bone tissues. Recently, polymeric supportive scaffolds and biomaterials have been used to rationally promote the generation of new bone tissues. To restore the bone tissue in this context, biofunctional polymeric materials with significant mechanical robustness together with embedded materials can act as a supportive matrix for cellular proliferation, adhesion, and osteogenic differentiation. The osteogenic regeneration to replace defective tissues demands greater calcium deposits, high alkaline phosphatase activity, and profound upregulation of osteocalcin as a late osteogenic marker. Ideally, the bioactive polymeric scaffolds (BPSs) utilized for bone tissue engineering should impose no detrimental impacts and function as a carrier for the controlled delivery and release of the loaded molecules necessary for the bone tissue regeneration. In this review, we provide comprehensive insights into different synthetic and natural polymers used for the regeneration of bone tissue and discuss various technologies applied for the engineering of BPSs and their physicomechanical properties and biological effects.


Assuntos
Osteogênese , Medicina Regenerativa , Osso e Ossos , Humanos , Polímeros , Alicerces Teciduais
8.
Mol Biol Rep ; 47(3): 1895-1904, 2020 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-32026321

RESUMO

Pancreatic cancer is the fourth common cause of cancer death. Surgery and chemotherapy are the common treatment strategies for pancreatic cancer patients; however, the response rate is less than 20% at advanced stages. In recent years, growing interest has been dedicated to natural products. Bitter apricot seeds possess a number of pharmacological properties including antitumor activity and amygdalin from bitter apricot seeds can induce apoptosis. In this study, we investigated the cyto/genotoxic effects of bitter apricot ethanolic extract (BAEE) and amygdalin on human pancreatic cancer PANC-1 and normal epithelial 293/KDR cells. BAEE was assessed using high-performance liquid chromatography for the confirmation of the structure. The biological impacts of BAEE and amygdalin on PANC-1 and 293/KDR cells were evaluated by MTT assay, DAPI staining, AnnexinV/PI and Real-time qPCR analysis. BAEE and amygdalin inhibited cancer cell growth in a dose- and time-dependent manner. DAPI staining and flow cytometric analysis revealed fragmented nuclei and elevated numbers of early and late apoptotic cells, respectively. Also, increased Bax/Bcl-2 ratio and upregulation of caspase-3 further confirmed the occurrence of apoptosis in PANC-1 cells, but not in non-cancerous 293/KDR cells. These results indicate that BAEE could mediate apoptosis induction in cancer cells through a mitochondria dependent pathway. These findings suggest that BAEE functions as a potent pro-apoptotic factor for human pancreatic cancer cells without a significant effect on 293/KDR cells. Though, the potent anti-cancer components of BAEE should be further identified. Moreover, in vivo investigations are required to confirm bitter apricot ethanolic extract's clinical value as an anti-tumor drug.


Assuntos
Amigdalina/farmacologia , Antineoplásicos Fitogênicos/farmacologia , Etanol/farmacologia , Neoplasias Pancreáticas/genética , Prunus armeniaca/química , Amigdalina/química , Antineoplásicos Fitogênicos/química , Caspase 3/genética , Caspase 3/metabolismo , Linhagem Celular Tumoral , Proliferação de Células/efeitos dos fármacos , Sobrevivência Celular/efeitos dos fármacos , Relação Dose-Resposta a Droga , Etanol/química , Regulação Neoplásica da Expressão Gênica/efeitos dos fármacos , Células HEK293 , Humanos , Neoplasias Pancreáticas/tratamento farmacológico , Neoplasias Pancreáticas/metabolismo , Extratos Vegetais/química , Extratos Vegetais/farmacologia , Proteínas Proto-Oncogênicas c-bcl-2/genética , Proteínas Proto-Oncogênicas c-bcl-2/metabolismo , Fatores de Tempo , Regulação para Cima , Proteína X Associada a bcl-2/genética , Proteína X Associada a bcl-2/metabolismo
9.
Gastric Cancer ; 22(1): 23-36, 2019 01.
Artigo em Inglês | MEDLINE | ID: mdl-30145749

RESUMO

Helicobacter pylori affect around 50% of the population worldwide. More importantly, the gastric infection induced by this bacterium is deemed to be associated with the progression of distal gastric carcinoma and gastric mucosal lymphoma in the human. H. pylori infection and its prevalent genotype significantly differ across various geographical regions. Based on numerous virulence factors, H. pylori can target different cellular proteins to modulate the variety of inflammatory responses and initiate numerous "hits" on the gastric mucosa. Such reactions lead to serious complications, including gastritis and peptic ulceration, gastric cancer and gastric mucosa-associated lymphoid structure lymphoma. Therefore, H. pylori have been considered as the type I carcinogen by the Global Firm for Research on Cancer. During the two past decades, different reports revealed that H. pylori possess oncogenic potentials in the gastric mucosa through a complicated interplay between the bacterial factors, various facets, and the environmental factors. Accordingly, numerous signaling pathways could be triggered in the development of gastrointestinal diseases (e.g., gastric cancer). Therefore, the main strategy for the treatment of gastric cancer is controlling the disease far before its onset using preventive/curative vaccination. Increasing the efficiency of vaccines may be achieved by new trials of vaccine modalities, which is used to optimize the cellular immunity. Taken all, H. pylori infection may impose severe complications, for resolving of which extensive researches are essential in terms of immune responses to H. pylori. We envision that H. pylori-mediated diseases can be controlled by advanced vaccines and immunotherapies.


Assuntos
Vacinas Bacterianas/uso terapêutico , Infecções por Helicobacter/complicações , Infecções por Helicobacter/terapia , Neoplasias/microbiologia , Neoplasias/prevenção & controle , Helicobacter pylori/imunologia , Helicobacter pylori/patogenicidade , Humanos , Vacinação , Virulência
10.
Appl Microbiol Biotechnol ; 103(8): 3407-3420, 2019 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-30810777

RESUMO

Helicobacter pylori bacteria are involved in gastroduodenal disorders, including gastric adenocarcinoma. Since the current therapies encounter with some significant shortcomings, much attention has been paid to the development of new alternative diagnostic and treatment modalities such as immunomedicines to target H. pylori. Having used phage display technology, we isolated fully humane small antibody (Ab) fragment (VL) against the Flap region of urease enzyme of H. pylori to suppress its enzymatic activity. Solution biopanning (SPB) and screening process against a customized biotinylated peptide corresponding to the enzyme Flap region resulted in the selection of VL single domain Abs confirmed by the enzyme-linked immunosorbent assay (ELISA), sodium dodecyl sulfate-polyacrylamide gel electrophoresis (SDS-PAGE), and Western blotting. The selected Ab fragments showed a high affinity with a KD value of 97.8 × 10-9 and specificity to the enzyme with high inhibitory impact. For the first time, a VL single domain Ab was isolated by SPB process against a critical segment of H. pylori urease using a diverse semi-synthetic library. Based on our findings, the selected VL Ab fragments can be used for the diagnosis, imaging, targeting, and/or immunotherapy of H. pylori. Further, Flap region shows great potential for vaccine therapy.


Assuntos
Anticorpos Antibacterianos/imunologia , Proteínas de Bactérias/imunologia , Helicobacter pylori/enzimologia , Anticorpos de Domínio Único/imunologia , Urease/imunologia , Afinidade de Anticorpos , Proteínas de Bactérias/antagonistas & inibidores , Proteínas de Bactérias/química , Técnicas de Visualização da Superfície Celular , Inibidores Enzimáticos/química , Inibidores Enzimáticos/imunologia , Humanos , Biblioteca de Peptídeos , Anticorpos de Domínio Único/química , Anticorpos de Domínio Único/genética , Urease/antagonistas & inibidores , Urease/química
11.
Med Res Rev ; 38(6): 2110-2136, 2018 09.
Artigo em Inglês | MEDLINE | ID: mdl-29846948

RESUMO

Nanotechnology as an emerging field has established inevitable impacts on nano-biomedicine and treatment of formidable diseases, inflammations, and malignancies. In this regard, substantial advances in the design of systems for delivery of therapeutic agents have emerged magnificent and innovative pathways in biomedical applications. Chitosan (CS) is derived via deacetylation of chitin as the second most abundant polysaccharide. Owing to the unique properties of CS (e.g., biocompatibility, biodegradability, bioactivity, mucoadhesion, cationic nature and functional groups), it is an excellent candidate for diverse biomedical and pharmaceutical applications such as drug/gene delivery, transplantation of encapsulated cells, tissue engineering, wound healing, antimicrobial purposes, etc. In this review, we will document, discuss, and provide some key insights toward design and application of miscellaneous nanoplatforms based on CS. The CS-based nanosystems (NSs) can be employed as advanced drug delivery systems (DDSs) in large part due to their remarkable physicochemical and biological characteristics. The abundant functional groups of CS allow the facile functionalization in order to engineer multifunctional NSs, which can simultaneously incorporate therapeutic agents, molecular targeting, and diagnostic/imaging capabilities in particular against malignancies. These multimodal NSs can be literally translated into clinical applications such as targeted diagnosis and therapy of cancer because they offer minimal systemic toxicity and maximal cytotoxicity against cancer cells and tumors. The recent developments in the CS-based NSs functionalized with targeting and imaging agents prove CS as a versatile polymer in targeted imaging and therapy.


Assuntos
Quitosana/química , Terapia de Alvo Molecular , Neoplasias/terapia , Nanomedicina Teranóstica , Animais , Sistemas de Liberação de Medicamentos , Humanos , Neoplasias/patologia , Microambiente Tumoral
12.
Appl Microbiol Biotechnol ; 102(16): 6899-6913, 2018 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-29862446

RESUMO

Infection with Helicobacter pylori may result in the emergence of gastric adenocarcinoma. Among various toxins assisting pathogenesis of H. pylori, the vacuolating cytotoxin A (VacA) is one of the most potent toxins known as the major cause of the peptic ulcer and gastric adenocarcinoma. To isolate single-chain variable fragments (scFvs) against two conserved regions of VacA, we capitalized on the phage display technology and a solution-phase biopanning (SPB). Characterization of scFvs was carried out by enzyme-linked immunosorbent assay (ELISA), immunoblotting, and surface plasmon resonance (SPR). Bioinformatics analyses were also performed in order to characterize the structural and functional properties of the isolated scFvs and the interaction(s) between the isolated antibodies (Ab)-antigen (Ag). After four rounds of biopanning, the positive colonies detected by scFv ELISA were harvested to extract the plasmids and perform sequencing. Of several colonies, three colonies showed high affinity to the VacA1 and two colonies for the VacA2. Further complementary examinations (e.g., sodium dodecyl sulfate polyacrylamide gel electrophoresis (SDS-PAGE), western blot, SPR, and flow cytometry) displayed the high affinity and specificity of the isolated scFvs to the VacA. Docking results revealed the interaction of the complementarity-determining regions (CDRs) with the VacA peptide. In conclusion, for the first time, we report on the isolation of several scFvs against conserved residues of VacA toxin with high affinity and specificity, which may be used as novel diagnostic/therapeutic tool in the H. pylori infection.


Assuntos
Anticorpos Antibacterianos/metabolismo , Proteínas de Bactérias/genética , Proteínas de Bactérias/metabolismo , Anticorpos Antibacterianos/genética , Western Blotting , Técnicas de Visualização da Superfície Celular , Sequência Conservada/genética , Ensaio de Imunoadsorção Enzimática , Infecções por Helicobacter/diagnóstico , Helicobacter pylori/química , Helicobacter pylori/genética
13.
Drug Dev Ind Pharm ; 43(8): 1244-1253, 2017 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-28323493

RESUMO

Non-small cell lung cancer (NSCLC) patients with sensitizing mutations in the exons 18-21 of the epithelial growth factor receptor (EGFR) gene show increased kinase activity of EGFR. Hence, tyrosine kinase inhibitors (TKIs) such as erlotinib (ETB) have commonly been used as the second line therapeutic option for the treatment of metastatic NSCLC. While the ETB is available as an oral dosage form, the local delivery of this TKI to the diseased cells of the lung may ameliorate its therapeutic impacts. In the current study, we report on the development of ETB-loaded solid lipid nanoparticle (SLN) based formulation of dry powder inhaler (ETB-SLN DPI). ETB-SLNs were formulated using designated amount of compritol/poloxamer 407. The engineered ETB-SLNs showed sub-100 nm spherical shape with an encapsulation efficiency of 78.21%. MTT assay and DAPI staining revealed that the ETB-SLNs enhanced the cytotoxicity of cargo drug molecules in the human alveolar adenocarcinoma epithelial A549 cells as a model for NSCLC. To attain the ETB-SLN DPI, the ETB-SLNs were efficiently spray dried into microparticles (1-5 µm) along with mannitol. The ETB-SLN DPI powder displayed suitable flowability and aerodynamic traits. The Carr's Index, Hausner ratio and Next Generation Impactor (NGI) analyses confirmed deep inhalation pattern of the formulation. Based on these findings, we propose the ETB-SLN DPI as a promising treatment modality for the NSCLC patients.


Assuntos
Carcinoma Pulmonar de Células não Pequenas/tratamento farmacológico , Sistemas de Liberação de Medicamentos/métodos , Inaladores de Pó Seco/métodos , Cloridrato de Erlotinib/administração & dosagem , Cloridrato de Erlotinib/farmacologia , Lipídeos/química , Neoplasias Pulmonares/tratamento farmacológico , Nanopartículas/química , Administração por Inalação , Linhagem Celular Tumoral , Química Farmacêutica , Inaladores de Pó Seco/instrumentação , Cloridrato de Erlotinib/química , Humanos
14.
J Nanobiotechnology ; 13: 26, 2015 Mar 26.
Artigo em Inglês | MEDLINE | ID: mdl-25880772

RESUMO

BACKGROUND: Targeted delivery of anticancer chemotherapeutics such as mitoxantrone (MTX) can significantly intensify their cytotoxic effects selectively in solid tumors such as breast cancer. In the current study, folic acid (FA)-armed and MTX-conjugated magnetic nanoparticles (MNPs) were engineered for targeted eradication of folate receptor (FR)-positive cancerous cells. Polyethylene glycol (PEG), FA and MTX were covalently conjugated onto the MNPs to engineer the PEGylated FA-MTX-MNPs. The internalization studies were performed using fluorescein isothiocyanate (FITC)-labeled FA-decorated MNPs (FA-FITC-MNPs) in both FR-positive MCF-7 cells and FR-negative A549 cells by means of fluorescence microscopy and flow cytometry. The cellular and molecular impacts of FA-MTX-MNPs were examined using trypan blue cell viability and FITC-labeled annexin V apoptosis assays and 4',6-diamidino-2-phenylindole (DAPI) staining, DNA ladder and quantitative polymerase chain reaction (qPCR) assays. RESULTS: The FR-positive MCF-7 cells showed significant internalization of the FA-FITC-MNPs, but not the FR-negative A549 cells. The FR-positive cells treated with the PEGylated FA-MTX-MNPs exhibited the IC50 values of 3 µg/mL and 1.7 µg/mL, 24 h and 48 h post-treatment, respectively. DAPI staining and DNA ladder assays revealed significant condensation of nucleus and fragmentation of genomic DNA in the FR-positive MCF-7 cells treated with the PEGylated FA-MTX-MNPs as compared to the FR-negative A549 cells. The FITC-labeled annexin V assay confirmed emergence of late apoptosis (>80%) in the FR-positive MCF-7 cells treated with the PEGylated FA-MTX-MNPs, but not in the FR-negative A549 cells. The qPCR analysis confirmed profound cytotoxic impacts via alterations of apoptosis-related genes induced by MTX-FA-MNPs in MCF-7 cells, but not in the A549 cells. CONCLUSION: Our findings evince that the engineered PEGylated FA-MTX-MNPs can be specifically taken up by the FR-positive malignant cells and effectively demolish them through up-regulation of Bcl-2-associated X protein (Bax) and Caspase 9 and down-regulation of AKt. Hence, the engineered nanosystem is proposed for simultaneous targeted imaging and therapy of various cancers overexpressing FRs.


Assuntos
Antineoplásicos/administração & dosagem , Receptores de Folato com Âncoras de GPI/metabolismo , Nanopartículas de Magnetita/administração & dosagem , Mitoxantrona/administração & dosagem , Terapia de Alvo Molecular/métodos , Antineoplásicos/química , Apoptose/efeitos dos fármacos , Apoptose/genética , Linhagem Celular Tumoral/efeitos dos fármacos , Sobrevivência Celular/efeitos dos fármacos , Fragmentação do DNA/efeitos dos fármacos , Ácido Fólico/administração & dosagem , Ácido Fólico/química , Regulação Neoplásica da Expressão Gênica/efeitos dos fármacos , Humanos , Células MCF-7/efeitos dos fármacos , Nanopartículas de Magnetita/química , Microscopia de Força Atômica , Mitoxantrona/química , Tamanho da Partícula , Polietilenoglicóis/química
15.
Pharm Biol ; 53(10): 1525-38, 2015.
Artigo em Inglês | MEDLINE | ID: mdl-25853953

RESUMO

CONTEXT: Galbanic acid (GBA) is a sesquiterpene coumarin with different medicinal properties and anticancer effects. OBJECTIVE: To improve the anticancer activities of GBA, in the current study, we aimed to fabricate GBA-loaded solid lipid nanoparticles (GBA-SLNs) and study their biological activities in vitro. MATERIALS AND METHODS: Hot homogenization was used for preparation of GBA-SLNs. The encapsulation efficiency (EE) and drug loading (DL) and in vitro release were determined. MTT, DAPI, DNA fragmentation, comet, and Anexin V apoptosis assays were used to compare the anti-cell proliferation and genotoxicity properties of GBA and GBA-SLNs against A549 cells and HUVEC to detect apoptosis and DNA damage in the final concentration of 100 µM after 48 h treatment. RESULTS: Scanning electron microscopy (SEM) and particle size analysis showed spherical SLNs (92 nm), monodispersed distribution, and zeta potential of -23.39 mV. High EE (>98%) and long-term in vitro release were achieved. The stability of GBA-SLNs in aqueous medium was approved after 3 months in terms of size and polydispersity index. GBA was able to inhibit A549 growth with an IC50 value of 62 µM at 48 h. Although GBA-SLNs could also inhibit the growth rate of A549 cells, the effect is perceived after 48 h, as approved by the quantitative expression of Bcl-xL and Casp 9 genes, and also genotoxicity assays. CONCLUSION: Long-term apoptotic effect of GBA-SLNs compared with GBA may be due to the accumulation of GBA-SLNs in the tumor site because of deviant tumor pathology. Our data confirmed that SLNs could be exploited for sustained lipophilic GBA delivery.


Assuntos
Química Farmacêutica/métodos , Cumarínicos/farmacologia , Citotoxinas/farmacologia , Dano ao DNA/efeitos dos fármacos , Nanopartículas/administração & dosagem , Linhagem Celular Tumoral , Sobrevivência Celular/efeitos dos fármacos , Sobrevivência Celular/fisiologia , Cumarínicos/química , Dano ao DNA/fisiologia , Relação Dose-Resposta a Droga , Células Endoteliais da Veia Umbilical Humana , Humanos , Lipídeos , Nanopartículas/química
16.
Synapse ; 68(9): 387-93, 2014 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-24753016

RESUMO

The current study is based on the "approach-withdrawal" theory of emotional regulation and lateralization of brain function in rodents, which has little been studied. The aim was to indentify asymmetry in hemispheric genes expression during depression. Depressive-like symptoms were induced in rats using chronic mild stress protocol. The sucrose consumption test was performed to identify the anhedonic and stress-resilient rats. After decapitation, RNA was extracted from frontotemporal cortex of both hemispheres of anhedonic and stress-resilient rats. The pattern of gene expression in these samples was compared with controls by real-time polymerase chain reaction. A linear mixed model analysis of variance was fitted to the data to estimate the effect of rat line. From the total of 30 rats in the experimental group, five rats were identified to be anhedonic and five were stress-resilient, according to the result of sucrose-consumption test. BDNF and NTRK-3 were expressed at significantly lower levels in the right hemisphere of anhedonic rats compared with stress-resilient rats. No significant difference was found between left hemispheres. Hemispheric asymmetry in the level of gene expression was only observed for the BDNF gene in stress-resilient rats, upregulated in right hemisphere compared with the left. Expression of NTRK3, HTR2A, COMT, and SERT was not lateralized. There was no significant asymmetry between hemispheres of anhedonic rats. This study supports the evidence for the role of genes responsible for neural plasticity in pathophysiology of depression, emphasizing probable hemispheric asymmetry at level of gene expression.


Assuntos
Fator Neurotrófico Derivado do Encéfalo/metabolismo , Transtorno Depressivo/fisiopatologia , Lobo Frontal/fisiopatologia , Receptor trkC/metabolismo , Estresse Psicológico/fisiopatologia , Lobo Temporal/fisiopatologia , Anedonia/fisiologia , Animais , Fator Neurotrófico Derivado do Encéfalo/genética , Catecol O-Metiltransferase/metabolismo , Sacarose Alimentar/administração & dosagem , Modelos Animais de Doenças , Lateralidade Funcional , Expressão Gênica , Modelos Lineares , Masculino , Proteínas de Ligação a RNA/metabolismo , Distribuição Aleatória , Ratos Wistar , Reação em Cadeia da Polimerase em Tempo Real , Receptor 5-HT2A de Serotonina/metabolismo , Receptor trkC/genética , Resiliência Psicológica
17.
Biochim Biophys Acta Gen Subj ; 1868(3): 130558, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38185238

RESUMO

The effectiveness of messenger RNA (mRNA) vaccines, especially those designed for COVID-19, relies heavily on sophisticated delivery systems that ensure efficient delivery of mRNA to target cells. A variety of nanoscale vaccine delivery systems (VDSs) have been explored for this purpose, including lipid nanoparticles (LNPs), liposomes, and polymeric nanoparticles made from biocompatible polymers such as poly(lactic-co-glycolic acid), as well as viral vectors and lipid-polymer hybrid complexes. Among these, LNPs are particularly notable for their efficiency in encapsulating and protecting mRNA. These nanoscale VDSs can be engineered to enhance stability and facilitate uptake by cells. The choice of delivery system depends on factors like the specific mRNA vaccine, target cell types, stability requirements, and desired immune response. In this review, we shed light on recent advances in delivery mechanisms for self-amplifying RNA (saRNA) vaccines, emphasizing groundbreaking studies on nanoscale delivery systems aimed at improving the efficacy and safety of mRNA/saRNA vaccines.


Assuntos
Vacinas , Vacinas de mRNA , RNA , RNA Mensageiro/genética , RNA Mensageiro/metabolismo , Polímeros
18.
Bioimpacts ; 13(4): 269-273, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37645029

RESUMO

Induced autoimmunity or autoinflammatory-like conditions as a rare vaccine-related adverse event have been reported following COVID-19 vaccination. Such inadvertent adverse reactions have raised somewhat concerns about the long-term safety of the developed vaccines. Such multifactorial phenomena may be related to the cross-reactivity between the viral-specific antigens with the host self-proteins through molecular mimicry mechanism and/or nonspecific bystander activation of the non-target antigen-independent immunity by the entities of the vaccine products. However, due to the low incidence of the reported/identified individuals and insufficient evidence, autoimmunity following the COVID-19 vaccination has not been approved. Thereby, it seems that further designated studies might warrant post-monitoring of the inevitable adverse immunologic reactions in the vaccinated individuals, especially among hypersensitive cases, to address possible immunological mechanisms induced by the viral vaccines, incorporated adjuvants, and even vaccine delivery systems.

19.
Bioimpacts ; 13(3): 255-267, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37431477

RESUMO

Introduction: Mesoporous silica nanoparticles (MSNPs) are considered innovative multifunctional structures for targeted drug delivery owing to their outstanding physicochemical characteristics. Methods: MSNPs were fabricated using the sol-gel method, and polyethylene glycol-600 (PEG600) was used for MSNPs modification. Subsequently, sunitinib (SUN) was loaded into the MSNPs, MSNP-PEG and MSNP-PEG/SUN were grafted with mucin 16 (MUC16) aptamers. The nanosystems (NSs) were characterized using FT-IR, TEM, SEM, DLS, XRD, BJH, and BET. Furthermore, the biological impacts of MSNPs were evaluated on the ovarian cancer cells by MTT assay and flow cytometry analysis. Results: The results revealed that the MSNPs have a spherical shape with an average dimension, pore size, and surface area of 56.10 nm, 2.488 nm, and 148.08 m2g-1, respectively. The cell viability results showed higher toxicity of targeted MSNPs in MUC16 overexpressing OVCAR-3 cells as compared to the SK-OV-3 cells; that was further confirmed by the cellular uptake results. The cell cycle analysis exhibited that the induction of sub-G1 phase arrest mostly occurred in MSNP-PEG/SUN-MUC16 treated OVCAR-3 cells and MSNP-PEG/SUN treated SK-OV-3 cells. DAPI staining showed apoptosis induction upon exposure to targeted MSNP in MUC16 positive OVCAR-3 cells. Conclusion: According to our results, the engineered NSs could be considered an effective multifunctional targeted drug delivery platform for the mucin 16 overexpressing cells.

20.
Biochim Biophys Acta Mol Basis Dis ; 1869(6): 166739, 2023 08.
Artigo em Inglês | MEDLINE | ID: mdl-37146918

RESUMO

Bone tumors are relatively rare, which are complex cancers and primarily involve the long bones and pelvis. Bone cancer is mainly categorized into osteosarcoma (OS), chondrosarcoma, and Ewing sarcoma. Of these, OS is the most intimidating cancer of the bone tissue, which is mostly found in the log bones in young children and older adults. Conspicuously, the current chemotherapy modalities used for the treatment of OS often fail mainly due to (i) the non-specific detrimental effects on normal healthy cells/tissues, (ii) the possible emergence of drug resistance mechanisms by cancer cells, and (iii) difficulty in the efficient delivery of anticancer drugs to the target cells. To impose the maximal therapeutic impacts on cancerous cells, it is of paramount necessity to specifically deliver chemotherapeutic agents to the tumor site and target the diseased cells using advanced nanoscale multifunctional drug delivery systems (DDSs) developed using organic and inorganic nanoparticles (NPs). In this review, we provide deep insights into the development of various DDSs applied in targeting and eradicating OS. We elaborate on different DDSs developed using biomaterials, including chitosan, collagen, poly(lactic acid), poly(lactic-co-glycolic acid), polycaprolactone, poly(ethylene glycol), polyvinyl alcohol, polyethyleneimine, quantum dots, polypeptide, lipid NPs, and exosomes. We also discuss DDSs established using inorganic nanoscale materials such as magnetic NPs, gold, zinc, titanium NPs, ceramic materials, silica, silver NPs, and platinum NPs. We further highlight anticancer drugs' role in bone cancer therapy and the biocompatibility of nanocarriers for OS treatment.


Assuntos
Antineoplásicos , Neoplasias Ósseas , Osteossarcoma , Criança , Humanos , Pré-Escolar , Idoso , Sistemas de Liberação de Medicamentos , Antineoplásicos/farmacologia , Antineoplásicos/uso terapêutico , Polietilenoglicóis , Neoplasias Ósseas/tratamento farmacológico
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA