RESUMO
Tree diversity can promote both predator abundance and diversity. However, whether this translates into increased predation and top-down control of herbivores across predator taxonomic groups and contrasting environmental conditions remains unresolved. We used a global network of tree diversity experiments (TreeDivNet) spread across three continents and three biomes to test the effects of tree species richness on predation across varying climatic conditions of temperature and precipitation. We recorded bird and arthropod predation attempts on plasticine caterpillars in monocultures and tree species mixtures. Both tree species richness and temperature increased predation by birds but not by arthropods. Furthermore, the effects of tree species richness on predation were consistent across the studied climatic gradient. Our findings provide evidence that tree diversity strengthens top-down control of insect herbivores by birds, underscoring the need to implement conservation strategies that safeguard tree diversity to sustain ecosystem services provided by natural enemies in forests.
Assuntos
Artrópodes , Biodiversidade , Aves , Clima , Comportamento Predatório , Árvores , Animais , Artrópodes/fisiologia , Aves/fisiologia , Cadeia Alimentar , Larva/fisiologiaRESUMO
Bats and birds are key providers of ecosystem services in forests. How climate and habitat jointly shape their communities is well studied, but whether biotic predictors from other trophic levels may improve bird and bat diversity models is less known, especially across large bioclimatic gradients. Here, we achieved multi-taxa surveys in 209 mature forests replicated in six European countries from Spain to Finland, to investigate the importance of biotic predictors (i.e. the abundance or activity of defoliating insects, spiders, earthworms and wild ungulates) for bat and bird taxonomic and functional diversity. We found that nine out of 12 bird and bat diversity metrics were best explained when biotic factors were added to models including climate and habitat variables, with a mean gain in explained variance of 38% for birds and 15% for bats. Tree functional diversity was the most important habitat predictor for birds, while bats responded more to understorey structure. The best biotic predictors for birds were spider abundance and defoliating insect activity, while only bat functional evenness responded positively to insect herbivory. Accounting for potential biotic interactions between bats, birds and other taxa of lower trophic levels will help to understand how environmental changes along large biogeographical gradients affect higher-level predator diversity in forest ecosystems.
Assuntos
Biodiversidade , Aves , Quirópteros , Florestas , Animais , Meio Ambiente , Europa (Continente) , Modelos BiológicosRESUMO
Many experiments have shown that local biodiversity loss impairs the ability of ecosystems to maintain multiple ecosystem functions at high levels (multifunctionality). In contrast, the role of biodiversity in driving ecosystem multifunctionality at landscape scales remains unresolved. We used a comprehensive pan-European dataset, including 16 ecosystem functions measured in 209 forest plots across six European countries, and performed simulations to investigate how local plot-scale richness of tree species (α-diversity) and their turnover between plots (ß-diversity) are related to landscape-scale multifunctionality. After accounting for variation in environmental conditions, we found that relationships between α-diversity and landscape-scale multifunctionality varied from positive to negative depending on the multifunctionality metric used. In contrast, when significant, relationships between ß-diversity and landscape-scale multifunctionality were always positive, because a high spatial turnover in species composition was closely related to a high spatial turnover in functions that were supported at high levels. Our findings have major implications for forest management and indicate that biotic homogenization can have previously unrecognized and negative consequences for large-scale ecosystem multifunctionality.
Assuntos
Biodiversidade , Florestas , Simulação por Computador , Bases de Dados Factuais , Ecossistema , Europa (Continente) , Agricultura Florestal , Modelos Biológicos , ÁrvoresRESUMO
Humans require multiple services from ecosystems, but it is largely unknown whether trade-offs between ecosystem functions prevent the realisation of high ecosystem multifunctionality across spatial scales. Here, we combined a comprehensive dataset (28 ecosystem functions measured on 209 forest plots) with a forest inventory dataset (105,316 plots) to extrapolate and map relationships between various ecosystem multifunctionality measures across Europe. These multifunctionality measures reflected different management objectives, related to timber production, climate regulation and biodiversity conservation/recreation. We found that trade-offs among them were rare across Europe, at both local and continental scales. This suggests a high potential for 'win-win' forest management strategies, where overall multifunctionality is maximised. However, across sites, multifunctionality was on average 45.8-49.8% below maximum levels and not necessarily highest in protected areas. Therefore, using one of the most comprehensive assessments so far, our study suggests a high but largely unrealised potential for management to promote multifunctional forests.
Assuntos
Biodiversidade , Ecossistema , Florestas , Clima , Europa (Continente) , HumanosRESUMO
Species assemblages are shaped by local and continental-scale processes that are seldom investigated together, due to the lack of surveys along independent gradients of latitude and habitat types. Our study investigated changes in the effects of forest composition and structure on bat and bird diversity across Europe. We compared the taxonomic and functional diversity of bat and bird assemblages in 209 mature forest plots spread along gradients of forest composition and vertical structure, replicated in 6 regions spanning from the Mediterranean to the boreal biomes. Species richness and functional evenness of both bat and bird communities were affected by the interactions between latitude and forest composition and structure. Bat and bird species richness increased with broadleaved tree cover in temperate and especially in boreal regions but not in the Mediterranean where they increased with conifer abundance. Bat species richness was lower in forests with smaller trees and denser understorey only in northern regions. Bird species richness was not affected by forest structure. Bird functional evenness increased in younger and denser forests. Bat functional evenness was also influenced by interactions between latitude and understorey structure, increasing in temperate forests but decreasing in the Mediterranean. Covariation between bat and bird abundances also shifted across Europe, from negative in southern forests to positive in northern forests. Our results suggest that community assembly processes in bats and birds of European forests are predominantly driven by abundance and accessibility of feeding resources, i.e., insect prey, and their changes across both forest types and latitudes.
Assuntos
Quirópteros , Árvores , Animais , Biodiversidade , Aves , Ecossistema , FlorestasRESUMO
Untangling the relative influences of environmental filtering and biotic interactions on species coexistence at various spatial scales is a long-held issue in community ecology. Separating these processes is especially important to understand the influences of introduced exotic species on the composition of native communities. For this aim, we investigated coexistence patterns in New Zealand exotic and native birds along multiple-scale habitat gradients. We built a Bayesian hierarchical model, contrasting the abundance variations of 10 native and 11 exotic species in 501 point counts spread along landscape and local-scale gradients of forest structure and composition. Although native and exotic species both occurred in a wide range of habitats, they were separated by landscape-level variables. Exotic species were most abundant in exotic conifer plantations embedded in farmland matrices, while native birds predominated in areas dominated by continuous native forest. In exotic plantation forests, and to a lesser extent in native forests, locally co-occurring exotic and native species were segregated along a gradient of vegetation height. These results support the prediction that exotic and native bird species are segregated along gradients related to anthropogenic disturbance and habitat availability. In addition, native and exotic species overlapped little in a multivariate functional space based on 10 life history traits associated with habitat selection. Hence, habitat segregation patterns were probably mediated more by environmental filtering processes than by competition at landscape and local scales.
Assuntos
Aves/classificação , Ecossistema , Árvores , Animais , Aves/fisiologia , Demografia , Espécies Introduzidas , Nova ZelândiaRESUMO
Higher efficiency in large-scale and long-term biodiversity monitoring can be obtained through the use of Essential Biodiversity Variables, among which species population sizes provide key data for conservation programs. Relevant estimations and assessment of actual population sizes are critical for species conservation, especially in the current context of global biodiversity erosion. However, knowledge on population size varies greatly, depending on species conservation status and ranges. While the most threatened or restricted-range species generally benefit from exhaustive counts and surveys, monitoring common and widespread species population size tends to be neglected or is simply more challenging to achieve. In such a context, citizen science (CS) is a powerful tool for the long-term monitoring of common species through the engagement of various volunteers, permitting data acquisition on the long term and over large spatial scales. Despite this substantially increased sampling effort, detectability issues imply that even common species may remain unnoticed at suitable sites. The use of structured CS schemes, including repeated visits, enables to model the detection process, permitting reliable inferences of population size estimates. Here, we relied on a large French structured CS scheme (EPOC-ODF) comprising 27,156 complete checklists over 3,873 sites collected during the 2021-2023 breeding seasons to estimate the population size of 63 common bird species using hierarchical distance sampling (HDS). These population size estimates were compared to the previous expert-based French breeding bird atlas estimations, which did not account for detectability issues. We found that population size estimates from the former French breeding bird atlas were lower than those estimated using HDS for 65% of species. Such a prevalence of lower estimations is likely due to more conservative estimates inferred from semi-quantitative expert-based assessments used for the previous atlas. We also found that species with long-range songs such as the Common Cuckoo (Cuculus canorus), Eurasian Hoopoe (Upupa epops) or the Eurasian Blackbird (Turdus merula) had, in contrast, higher estimated population sizes in the previous atlas than in our HDS models. Our study highlights the need to rely on sound statistical methodology to ensure reliable ecological inferences with adequate uncertainty estimation and advocates for a higher reliance on structured CS in support of long-term biodiversity monitoring.
Assuntos
Biodiversidade , Aves , Ciência do Cidadão , Conservação dos Recursos Naturais , Densidade Demográfica , Animais , França , Conservação dos Recursos Naturais/métodosRESUMO
On oceanic islands, strong human impacts on habitats, combined with introductions of exotic species, modify the composition of terrestrial bird assemblages and threaten their ecological functions. In La Réunion, an oceanic island located in the Madagascan region, a national park was established in 2007 to counter the ecosystem-level effects of three centuries of habitat conversion, native species destruction and exotic species introductions. Here, we investigated how bird assemblages were structured in these human-modified landscapes, 10 years before the national park set out its first conservation measures. We used a combination of multivariate statistics and generalized additive models to describe variations in the taxonomic and functional composition and diversity of 372 local bird assemblages, encompassing 20 species, along gradients of habitat composition and configuration. We found that native species were tied to native habitats while exotic species were associated with urban areas and man-modified landscape mosaics, with some overlap at mid-elevations. Species' trophic preferences were segregated along habitat gradients, but ecological traits had an overall weak role in explaining the composition of species assemblages. Hence, at the time of the survey, native and exotic species in La Réunion formed two spatially distinct species assemblages with contrasting ecological trait suites that benefited from antagonistic habitat compositions and dynamics. We conclude that our results support the analysis of historical data sets to establish reference points to monitor human impacts on insular ecosystems.
RESUMO
The COVID-19 shutdown has caused a quasi-experimental situation for ecologists in Spring 2020, providing an unprecedented release in acoustic space for avian soundscapes due to the lowest technophony levels experienced for decades. We conducted large-scale passive acoustic monitoring in 68 forest stands during and after the shutdown to compare their acoustic diversity under different management regimes. We designed a before-after sampling scheme of 18 paired stands to evaluate the short-term effect of shutdown on diel and nocturnal acoustic diversity of forest soundscapes. We assessed whether old-growth preserves hosted higher acoustic diversity and vocal activity of flagship specialist birds than production stands during the shutdown, and whether the effect of management was mediated by landscape fragmentation and distance to roads. We derived acoustic richness and vocal activity of flagship specialist birds by systematically performing 15-min long aural listening to identify species vocalizations from all recorded stands. The end of the COVID-19 shutdown led to a rapid decrease in diel and nocturnal biophony and acoustic diversity. During the shutdown, we found significantly higher biophony and acoustic diversity in old-growth preserves than in production stands. Bird acoustic richness and vocalizations of the two most frequent flagship specialists, Dendrocoptes medius and Phylloscopus sibilatrix, were also both higher in old-growth stands. Interestingly, this positive effect of old-growth stands on forest soundscapes suggested that they could potentially attenuate traffic noise, because the distance to roads decreased acoustic diversity and biophony only outside old-growth preserves. Similarly, flagship bird richness increased with old-growth cover in the surrounding landscape while edge density had a negative effect on both acoustic diversity and flagship birds. We suggest that enhancing the old-growth preserve network implemented across French public forests would provide a connected frame of acoustic sanctuaries mitigating the ever-increasing effect of technophony on the acoustic diversity of temperate forest soundscapes.
RESUMO
Species sensitivity to forest fragmentation varies latitudinally, peaking in the tropics. A prominent explanation for this pattern is that historical landscape disturbance at higher latitudes has removed fragmentation-sensitive species or promoted the evolution of more resilient survivors. However, it is unclear whether this so-called extinction filter is the dominant driver of geographic variation in fragmentation sensitivity, particularly because climatic factors may also cause latitudinal gradients in dispersal ability, a key trait mediating sensitivity to habitat fragmentation. Here we combine field survey data with a morphological proxy for avian dispersal ability (hand-wing index) to assess responses to forest fragmentation in 1,034 bird species worldwide. We find that fragmentation sensitivity is strongly predicted by dispersal limitation and that other factors-latitude, body mass and historical disturbance events-have relatively limited explanatory power after accounting for species differences in dispersal. We also show that variation in dispersal ability is only weakly predicted by historical disturbance and more strongly associated with intra-annual temperature fluctuations (seasonality). Our results suggest that climatic factors play a dominant role in driving global variation in the impacts of forest fragmentation, emphasizing the need for more nuanced environmental policies that take into account local context and associated species traits.
Assuntos
Ecossistema , Florestas , Animais , Clima , Aves/fisiologia , Política AmbientalRESUMO
Knowledge of species' functional traits is essential for understanding biodiversity patterns, predicting the impacts of global environmental changes, and assessing the efficiency of conservation measures. Bats are major components of mammalian diversity and occupy a variety of ecological niches and geographic distributions. However, an extensive compilation of their functional traits and ecological attributes is still missing. Here we present EuroBaTrait 1.0, the most comprehensive and up-to-date trait dataset covering 47 European bat species. The dataset includes data on 118 traits including genetic composition, physiology, morphology, acoustic signature, climatic associations, foraging habitat, roost type, diet, spatial behaviour, life history, pathogens, phenology, and distribution. We compiled the bat trait data obtained from three main sources: (i) a systematic literature and dataset search, (ii) unpublished data from European bat experts, and (iii) observations from large-scale monitoring programs. EuroBaTrait is designed to provide an important data source for comparative and trait-based analyses at the species or community level. The dataset also exposes knowledge gaps in species, geographic and trait coverage, highlighting priorities for future data collection.
Assuntos
Quirópteros , Animais , Biodiversidade , Quirópteros/fisiologia , Ecossistema , Europa (Continente) , MamíferosRESUMO
According to the associational resistance hypothesis, neighbouring plants are expected to influence both the insect herbivore communities and their natural enemies. However, this has rarely been tested for the effects of canopy trees on herbivory of seedlings. One possible mechanism responsible for associational resistance is the indirect impact of natural enemies on insect herbivory, such as insectivorous birds. But it remains unclear to what extent such trophic cascades are influenced by the composition of plant associations (i.e. identity of 'associated' plants). Here, we compared the effect of bird exclusion on insect leaf damage for seedlings of three broadleaved tree species in three different forest habitats. Exclusion of insectivorous birds affected insect herbivory in a species-specific manner: leaf damage increased on Betula pendula seedlings whereas bird exclusion had no effect for two oaks (Quercus robur and Q. ilex). Forest habitat influenced both the extent of insect herbivory and the effect of bird exclusion. Broadleaved seedlings had lower overall leaf damage within pine plantations than within broadleaved stands, consistent with the resource concentration hypothesis. The indirect effect of bird exclusion on leaf damage was only significant in pine plantations, but not in exotic and native broadleaved woodlands. Our results support the enemies hypothesis, which predicts that the effects of insectivorous birds on insect herbivory on seedlings are greater beneath non-congeneric canopy trees. Although bird species richness and abundance were greater in broadleaved woodlands, birds were unable to regulate insect herbivory on seedlings in forests of more closely related tree species.
Assuntos
Betula/fisiologia , Aves/fisiologia , Herbivoria , Insetos/fisiologia , Comportamento Predatório , Quercus/fisiologia , Animais , Ecossistema , Cadeia Alimentar , Dinâmica Populacional , Plântula/fisiologia , Estresse FisiológicoRESUMO
Urbanization is an important driver of the diversity and abundance of tree-associated insect herbivores, but its consequences for insect herbivory are poorly understood. A likely source of variability among studies is the insufficient consideration of intra-urban variability in forest cover. With the help of citizen scientists, we investigated the independent and interactive effects of local canopy cover and percentage of impervious surface on insect herbivory in the pedunculate oak (Quercus robur L.) throughout most of its geographic range in Europe. We found that the damage caused by chewing insect herbivores as well as the incidence of leaf-mining and gall-inducing herbivores consistently decreased with increasing impervious surface around focal oaks. Herbivory by chewing herbivores increased with increasing forest cover, regardless of impervious surface. In contrast, an increase in local canopy cover buffered the negative effect of impervious surface on leaf miners and strengthened its effect on gall inducers. These results show that-just like in non-urban areas-plant-herbivore interactions in cities are structured by a complex set of interacting factors. This highlights that local habitat characteristics within cities have the potential to attenuate or modify the effect of impervious surfaces on biotic interactions.
RESUMO
Despite the key importance of the landscape matrix for bats, we still not fully understand how the effect of forest composition interacts at combined stand and landscape scales to shape bat communities. In addition, we lack detailed knowledge on the effects of local habitat structure on bat-prey relationships in forested landscapes. We tested the assumptions that (i) forest composition has interacting effects on bats between stand and landscape scales; and (ii) stand structure mediates prey abundance effects on bat activity. Our results indicated that in conifer-dominated landscapes (> 80% of coniferous forests) bat activity was higher in stands with a higher proportion of deciduous trees while bats were less active in stands with a higher proportion of deciduous trees in mixed forest landscapes (~ 50% of deciduous forests). Moth abundance was selected in the best models for six among nine bat species. The positive effect of moth abundance on Barbastella barbastellus was mediated by vegetation clutter, with dense understory cover likely reducing prey accessibility. Altogether, our findings deepen our understanding of the ecological processes affecting bats in forest landscapes and strengthen the need to consider both landscape context and trophic linkage when assessing the effects of stand-scale compositional and structural attributes on bats.
Assuntos
Quirópteros , Cadeia Alimentar , Florestas , Animais , França , Mariposas , Densidade DemográficaRESUMO
An amendment to this paper has been published and can be accessed via a link at the top of the paper.
RESUMO
Local biodiversity trends over time are likely to be decoupled from global trends, as local processes may compensate or counteract global change. We analyze 161 long-term biological time series (15-91 years) collected across Europe, using a comprehensive dataset comprising ~6,200 marine, freshwater and terrestrial taxa. We test whether (i) local long-term biodiversity trends are consistent among biogeoregions, realms and taxonomic groups, and (ii) changes in biodiversity correlate with regional climate and local conditions. Our results reveal that local trends of abundance, richness and diversity differ among biogeoregions, realms and taxonomic groups, demonstrating that biodiversity changes at local scale are often complex and cannot be easily generalized. However, we find increases in richness and abundance with increasing temperature and naturalness as well as a clear spatial pattern in changes in community composition (i.e. temporal taxonomic turnover) in most biogeoregions of Northern and Eastern Europe.
Assuntos
Biodiversidade , Ecossistema , Mudança Climática , Europa (Continente)RESUMO
The use of functional information in the form of species traits plays an important role in explaining biodiversity patterns and responses to environmental changes. Although relationships between species composition, their traits, and the environment have been extensively studied on a case-by-case basis, results are variable, and it remains unclear how generalizable these relationships are across ecosystems, taxa and spatial scales. To address this gap, we collated 80 datasets from trait-based studies into a global database for metaCommunity Ecology: Species, Traits, Environment and Space; "CESTES". Each dataset includes four matrices: species community abundances or presences/absences across multiple sites, species trait information, environmental variables and spatial coordinates of the sampling sites. The CESTES database is a live database: it will be maintained and expanded in the future as new datasets become available. By its harmonized structure, and the diversity of ecosystem types, taxonomic groups, and spatial scales it covers, the CESTES database provides an important opportunity for synthetic trait-based research in community ecology.
Assuntos
Biota , Animais , Biodiversidade , Ecologia , PlantasRESUMO
While the area of plantation forest increased globally between 2010 and 2015, more than twice the area of natural forests was lost over the same period (6.5 million ha natural forest lost per year versus 3.2 million ha plantation gained per year). Consequently, there is an increasing need to understand how plantation land use affects biodiversity. The relative conservation value of plantation forests is context dependent, being influenced by previous land use, management regimes and landscape composition. What is less well understood, and of importance to conservation management, is the consistency of diversity patterns across regions, and the degree to which useful generalisations can be provided within and among bioregions. Here, we analyse forest birds in Ireland, France and Portugal, representing distinct regions across the Atlantic biogeographic area of Europe. We compared taxonomic, functional and phylogenetic diversity of bird communities among conifer plantations and semi-natural oak forests, and assessed correlations between species traits and forest type across these regions. Although bird composition (assessed with NMDS ordination) differed consistently between plantation and oak forests across all three regions, species richness and Shannon diversity did not show a consistent pattern. In Ireland and France, metrics of taxonomic diversity (richness and Shannon diversity), functional diversity, functional dispersion and phylogenetic diversity were greater in oak forests than plantations. However, in Portugal taxonomic and phylogenetic diversity did not differ significantly between forest types, while functional diversity and dispersion were statistically significantly greater in plantations. No single bird trait-forest type association correlated in a consistent direction across the three study regions. Trait associations for the French bird communities appeared intermediate between those in Ireland and Portugal, and when trait correlations were significant in both Ireland and Portugal, the direction of the correlation was always opposite. The variation in response of bird communities to conifer plantations indicates that care is needed when generalising patterns of community diversity and assembly mechanisms across regions.
Assuntos
Biodiversidade , Aves/fisiologia , Florestas , Animais , Europa (Continente) , Quercus/fisiologia , Traqueófitas/fisiologiaRESUMO
The diversity of plant neighbors commonly results in direct, bottom-up effects on herbivore ability to locate their host, and in indirect effects on herbivores involving changes in plant traits and a top-down control by their enemies. Yet, the relative contribution of bottom-up and top-down forces remains poorly understood. We also lack knowledge on the effect of abiotic constraints such as summer drought on the strength and direction of these effects. We measured leaf damage on pedunculate oak (Quercus robur), alone or associated with birch, pine or both in a long-term tree diversity experiment (ORPHEE), where half of the plots were irrigated while the other half remained without irrigation and received only rainfall. We tested three mechanisms likely to explain the effects of oak neighbors on herbivory: (1) Direct bottom-up effects of heterospecific neighbors on oak accessibility to herbivores, (2) indirect bottom-up effects of neighbors on the expression of leaf traits, and (3) top-down control of herbivores by predators. Insect herbivory increased during the growth season but was independent of neighbor identity and irrigation. Specific leaf area, leaf toughness, and thickness varied with neighbor identity while leaf dry matter content or C:N ratio did not. When summarized in a principal component analysis (PCA), neighbor identity explained 87% of variability in leaf traits. PCA axes partially predicted herbivory. Despite greater rates of attack on dummy caterpillars in irrigated plots, avian predation, and insect herbivory remained unrelated. Our study suggests that neighbor identity can indirectly influence insect herbivory in mixed forests by modifying leaf traits. However, we found only partial evidence for these trait-mediated effects and suggest that more attention should be paid to some unmeasured plant traits such as secondary metabolites, including volatile organic compounds, to better anticipate the effects of climate change on plant-insect interactions in the future.
RESUMO
A major conservation challenge in mosaic landscapes is to understand how trait-specific responses to habitat edges affect bird communities, including potential cascading effects on bird functions providing ecosystem services to forests, such as pest control. Here, we examined how bird species richness, abundance and community composition varied from interior forest habitats and their edges into adjacent open habitats, within a multi-regional sampling scheme. We further analyzed variations in Conservation Value Index (CVI), Community Specialization Index (CSI) and functional traits across the forest-edge-open habitat gradient. Bird species richness, total abundance and CVI were significantly higher at forest edges while CSI peaked at interior open habitats, i.e., furthest from forest edge. In addition, there were important variations in trait- and species-specific responses to forest edges among bird communities. Positive responses to forest edges were found for several forest bird species with unfavorable conservation status. These species were in general insectivores, understorey gleaners, cavity nesters and long-distance migrants, all traits that displayed higher abundance at forest edges than in forest interiors or adjacent open habitats. Furthermore, consistently with predictions, negative edge effects were recorded in some forest specialist birds and in most open-habitat birds, showing increasing densities from edges to interior habitats. We thus suggest that increasing landscape-scale habitat complexity would be beneficial to declining species living in mosaic landscapes combining small woodlands and open habitats. Edge effects between forests and adjacent open habitats may also favor bird functional guilds providing valuable ecosystem services to forests in longstanding fragmented landscapes.