Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 19 de 19
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Phys Rev Lett ; 130(5): 051803, 2023 Feb 03.
Artigo em Inglês | MEDLINE | ID: mdl-36800477

RESUMO

The COHERENT Collaboration searched for scalar dark matter particles produced at the Spallation Neutron Source with masses between 1 and 220 MeV/c^{2} using a CsI[Na] scintillation detector sensitive to nuclear recoils above 9 keV_{nr}. No evidence for dark matter is found and we thus place limits on allowed parameter space. With this low-threshold detector, we are sensitive to coherent elastic scattering between dark matter and nuclei. The cross section for this process is orders of magnitude higher than for other processes historically used for accelerator-based direct-detection searches so that our small, 14.6 kg detector significantly improves on past constraints. At peak sensitivity, we reject the flux consistent with the cosmologically observed dark-matter concentration for all coupling constants α_{D}<0.64, assuming a scalar dark-matter particle. We also calculate the sensitivity of future COHERENT detectors to dark-matter signals which will ambitiously test multiple dark-matter spin scenarios.

2.
Phys Rev Lett ; 131(22): 221801, 2023 Dec 01.
Artigo em Inglês | MEDLINE | ID: mdl-38101357

RESUMO

Using an 185-kg NaI[Tl] array, COHERENT has measured the inclusive electron-neutrino charged-current cross section on ^{127}I with pion decay-at-rest neutrinos produced by the Spallation Neutron Source at Oak Ridge National Laboratory. Iodine is one the heaviest targets for which low-energy (≤50 MeV) inelastic neutrino-nucleus processes have been measured, and this is the first measurement of its inclusive cross section. After a five-year detector exposure, COHERENT reports a flux-averaged cross section for electron neutrinos of 9.2_{-1.8}^{+2.1}×10^{-40} cm^{2}. This corresponds to a value that is ∼41% lower than predicted using the MARLEY event generator with a measured Gamow-Teller strength distribution. In addition, the observed visible spectrum from charged-current scattering on ^{127}I has been measured between 10 and 55 MeV, and the exclusive zero-neutron and one-or-more-neutron emission cross sections are measured to be 5.2_{-3.1}^{+3.4}×10^{-40} and 2.2_{-0.5}^{+0.4}×10^{-40} cm^{2}, respectively.

3.
Phys Rev Lett ; 129(8): 081801, 2022 Aug 19.
Artigo em Inglês | MEDLINE | ID: mdl-36053683

RESUMO

We measured the cross section of coherent elastic neutrino-nucleus scattering (CEvNS) using a CsI[Na] scintillating crystal in a high flux of neutrinos produced at the Spallation Neutron Source at Oak Ridge National Laboratory. New data collected before detector decommissioning have more than doubled the dataset since the first observation of CEvNS, achieved with this detector. Systematic uncertainties have also been reduced with an updated quenching model, allowing for improved precision. With these analysis improvements, the COHERENT Collaboration determined the cross section to be (165_{-25}^{+30})×10^{-40} cm^{2}, consistent with the standard model, giving the most precise measurement of CEvNS yet. The timing structure of the neutrino beam has been exploited to compare the CEvNS cross section from scattering of different neutrino flavors. This result places leading constraints on neutrino nonstandard interactions while testing lepton flavor universality and measures the weak mixing angle as sin^{2}θ_{W}=0.220_{-0.026}^{+0.028} at Q^{2}≈(50 MeV)^{2}.

4.
Phys Rev Lett ; 126(1): 012002, 2021 Jan 08.
Artigo em Inglês | MEDLINE | ID: mdl-33480779

RESUMO

We report the first measurement of coherent elastic neutrino-nucleus scattering (CEvNS) on argon using a liquid argon detector at the Oak Ridge National Laboratory Spallation Neutron Source. Two independent analyses prefer CEvNS over the background-only null hypothesis with greater than 3σ significance. The measured cross section, averaged over the incident neutrino flux, is (2.2±0.7)×10^{-39} cm^{2}-consistent with the standard model prediction. The neutron-number dependence of this result, together with that from our previous measurement on CsI, confirms the existence of the CEvNS process and provides improved constraints on nonstandard neutrino interactions.

5.
Phys Rev Lett ; 124(23): 232502, 2020 Jun 12.
Artigo em Inglês | MEDLINE | ID: mdl-32603173

RESUMO

We report on a comparison between the theoretically predicted and experimentally measured spectra of the first-forbidden nonunique ß-decay transition ^{137}Xe(7/2^{-})→^{137}Cs(7/2^{+}). The experimental data were acquired by the EXO-200 experiment during a deployment of an AmBe neutron source. The ultralow background environment of EXO-200, together with dedicated source deployment and analysis procedures, allowed for collection of a pure sample of the decays, with an estimated signal to background ratio of more than 99 to 1 in the energy range from 1075 to 4175 keV. In addition to providing a rare and accurate measurement of the first-forbidden nonunique ß-decay shape, this work constitutes a novel test of the calculated electron spectral shapes in the context of the reactor antineutrino anomaly and spectral bump.

6.
Phys Rev Lett ; 123(23): 231106, 2019 Dec 06.
Artigo em Inglês | MEDLINE | ID: mdl-31868502

RESUMO

Dual-phase xenon detectors lead the search for keV-scale nuclear recoil signals expected from the scattering of weakly interacting massive particle (WIMP) dark matter, and can potentially be used to study the coherent nuclear scattering of MeV-scale neutrinos. New capabilities of such experiments can be enabled by extending their nuclear recoil searches down to the lowest measurable energy. The response of the liquid xenon target medium to nuclear recoils, however, is not well characterized below a few keV, leading to large uncertainties in projected sensitivities. In this work, we report a new measurement of ionization signals from nuclear recoils in liquid xenon down to the lowest energy reported to date. At 0.3 keV, we find that the average recoil produces approximately one ionization electron; this is the first measurement of nuclear recoil signals at the single-ionization-electron level, approaching the physical limit of liquid xenon ionization detectors. We discuss the implications of these measurements on the physics reach of xenon detectors for nuclear-recoil-based WIMP dark matter searches and the detection of coherent elastic neutrino-nucleus scattering.

7.
Phys Rev Lett ; 123(16): 161802, 2019 Oct 18.
Artigo em Inglês | MEDLINE | ID: mdl-31702371

RESUMO

A search for neutrinoless double-ß decay (0νßß) in ^{136}Xe is performed with the full EXO-200 dataset using a deep neural network to discriminate between 0νßß and background events. Relative to previous analyses, the signal detection efficiency has been raised from 80.8% to 96.4±3.0%, and the energy resolution of the detector at the Q value of ^{136}Xe 0νßß has been improved from σ/E=1.23% to 1.15±0.02% with the upgraded detector. Accounting for the new data, the median 90% confidence level 0νßß half-life sensitivity for this analysis is 5.0×10^{25} yr with a total ^{136}Xe exposure of 234.1 kg yr. No statistically significant evidence for 0νßß is observed, leading to a lower limit on the 0νßß half-life of 3.5×10^{25} yr at the 90% confidence level.

8.
Phys Rev Lett ; 120(7): 072701, 2018 Feb 16.
Artigo em Inglês | MEDLINE | ID: mdl-29542972

RESUMO

Results from a search for neutrinoless double-beta decay (0νßß) of ^{136}Xe are presented using the first year of data taken with the upgraded EXO-200 detector. Relative to previous searches by EXO-200, the energy resolution of the detector has been improved to σ/E=1.23%, the electric field in the drift region has been raised by 50%, and a system to suppress radon in the volume between the cryostat and lead shielding has been implemented. In addition, analysis techniques that improve topological discrimination between 0νßß and background events have been developed. Incorporating these hardware and analysis improvements, the median 90% confidence level 0νßß half-life sensitivity after combining with the full data set acquired before the upgrade has increased twofold to 3.7×10^{25} yr. No statistically significant evidence for 0νßß is observed, leading to a lower limit on the 0νßß half-life of 1.8×10^{25} yr at the 90% confidence level.

9.
Phys Rev Lett ; 120(13): 132502, 2018 Mar 30.
Artigo em Inglês | MEDLINE | ID: mdl-29694188

RESUMO

The Majorana Collaboration is operating an array of high purity Ge detectors to search for neutrinoless double-ß decay in ^{76}Ge. The Majorana Demonstrator comprises 44.1 kg of Ge detectors (29.7 kg enriched in ^{76}Ge) split between two modules contained in a low background shield at the Sanford Underground Research Facility in Lead, South Dakota. Here we present results from data taken during construction, commissioning, and the start of full operations. We achieve unprecedented energy resolution of 2.5 keV FWHM at Q_{ßß} and a very low background with no observed candidate events in 9.95 kg yr of enriched Ge exposure, resulting in a lower limit on the half-life of 1.9×10^{25} yr (90% C.L.). This result constrains the effective Majorana neutrino mass to below 240-520 meV, depending on the matrix elements used. In our experimental configuration with the lowest background, the background is 4.0_{-2.5}^{+3.1} counts/(FWHM t yr).

10.
Phys Rev Lett ; 113(22): 229001, 2014 Nov 28.
Artigo em Inglês | MEDLINE | ID: mdl-25494093

RESUMO

A Comment on the Letter by J. H. Davis, Phys. Rev. Lett. 113, 081302 (2014)PRLTAO0031-900710.1103/PhysRevLett.113.081302.

11.
Phys Rev Lett ; 109(3): 032505, 2012 Jul 20.
Artigo em Inglês | MEDLINE | ID: mdl-22861843

RESUMO

We report on a search for neutrinoless double-beta decay of 136Xe with EXO-200. No signal is observed for an exposure of 32.5 kg yr, with a background of ∼1.5×10(-3) kg(-1) yr(-1) keV(-1) in the ±1σ region of interest. This sets a lower limit on the half-life of the neutrinoless double-beta decay T(1/2)(0νßß)(136Xe)>1.6×10(25) yr (90% C.L.), corresponding to effective Majorana masses of less than 140-380 meV, depending on the matrix element calculation.

12.
Phys Rev Lett ; 107(14): 141301, 2011 Sep 30.
Artigo em Inglês | MEDLINE | ID: mdl-22107183

RESUMO

Fifteen months of cumulative CoGeNT data are examined for indications of an annual modulation, a predicted signature of weakly interacting massive particle (WIMP) interactions. Presently available data support the presence of a modulated component of unknown origin, with parameters prima facie compatible with a galactic halo composed of light-mass WIMPs. Unoptimized estimators yield a statistical significance for a modulation of ∼2.8σ, limited by the short exposure.

13.
Phys Rev Lett ; 106(13): 131301, 2011 Apr 01.
Artigo em Inglês | MEDLINE | ID: mdl-21517370

RESUMO

We report on several features in the energy spectrum from an ultralow-noise germanium detector operated deep underground. By implementing a new technique able to reject surface events, a number of cosmogenic peaks can be observed for the first time. We discuss an irreducible excess of bulklike events below 3 keV in ionization energy. These could be caused by unknown backgrounds, but also dark matter interactions consistent with DAMA/LIBRA. It is not yet possible to determine their origin. Improved constraints are placed on a cosmological origin for the DAMA/LIBRA effect.

14.
Phys Rev Lett ; 107(21): 212501, 2011 Nov 18.
Artigo em Inglês | MEDLINE | ID: mdl-22181874

RESUMO

We report the observation of two-neutrino double-beta decay in (136)Xe with T(1/2) = 2.11 ± 0.04(stat) ± 0.21(syst) × 10(21) yr. This second-order process, predicted by the standard model, has been observed for several nuclei but not for (136)Xe. The observed decay rate provides new input to matrix element calculations and to the search for the more interesting neutrinoless double-beta decay, the most sensitive probe for the existence of Majorana particles and the measurement of the neutrino mass scale.

15.
Science ; 357(6356): 1123-1126, 2017 09 15.
Artigo em Inglês | MEDLINE | ID: mdl-28775215

RESUMO

The coherent elastic scattering of neutrinos off nuclei has eluded detection for four decades, even though its predicted cross section is by far the largest of all low-energy neutrino couplings. This mode of interaction offers new opportunities to study neutrino properties and leads to a miniaturization of detector size, with potential technological applications. We observed this process at a 6.7σ confidence level, using a low-background, 14.6-kilogram CsI[Na] scintillator exposed to the neutrino emissions from the Spallation Neutron Source at Oak Ridge National Laboratory. Characteristic signatures in energy and time, predicted by the standard model for this process, were observed in high signal-to-background conditions. Improved constraints on nonstandard neutrino interactions with quarks are derived from this initial data set.

16.
Rev Sci Instrum ; 85(9): 095114, 2014 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-25273779

RESUMO

We describe a system to transport and identify barium ions produced in liquid xenon, as part of R&D towards the second phase of a double beta decay experiment, nEXO. The goal is to identify the Ba ion resulting from an extremely rare nuclear decay of the isotope (136)Xe, hence providing a confirmation of the occurrence of the decay. This is achieved through Resonance Ionization Spectroscopy (RIS). In the test setup described here, Ba ions can be produced in liquid xenon or vacuum and collected on a clean substrate. This substrate is then removed to an analysis chamber under vacuum, where laser-induced thermal desorption and RIS are used with time-of-flight mass spectroscopy for positive identification of the barium decay product.

17.
Rev Sci Instrum ; 82(10): 105114, 2011 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-22047336

RESUMO

A magnetically driven piston pump for xenon gas recirculation is presented. The pump is designed to satisfy extreme purity and containment requirements, as is appropriate for the recirculation of isotopically enriched xenon through the purification system and large liquid xenon time projection chamber of EXO-200. The pump, using sprung polymer gaskets, is capable of pumping more than 16 standard liters per minute of xenon gas with 750 Torr differential pressure.

18.
Rev Sci Instrum ; 81(11): 113301, 2010 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-21133463

RESUMO

We describe a source capable of producing single barium ions through nuclear recoils in radioactive decay. The source is fabricated by electroplating (148)Gd onto a silicon α-particle detector and vapor depositing a layer of BaF(2) over it. (144)Sm recoils from the alpha decay of (148)Gd are used to dislodge Ba(+) ions from the BaF(2) layer and emit them in the surrounding environment. The simultaneous detection of an α particle in the substrate detector allows for tagging of the nuclear decay and of the Ba(+) emission. The source is simple, durable, and can be manipulated and used in different environments. We discuss the fabrication process, which can be easily adapted to emit most other chemical species, and the performance of the source.

19.
Phys Rev Lett ; 101(25): 251301, 2008 Dec 19.
Artigo em Inglês | MEDLINE | ID: mdl-19113689

RESUMO

A claim for evidence of dark matter interactions in the DAMA experiment has been recently reinforced. We employ a new type of germanium detector to conclusively rule out a standard isothermal galactic halo of weakly interacting massive particles as the explanation for the annual modulation effect leading to the claim. Bounds are similarly imposed on a suggestion that dark pseudoscalars might lead to the effect. We describe the sensitivity to light dark matter particles achievable with our device, in particular, to next-to-minimal supersymmetric model candidates.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA