Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
1.
Environ Sci Technol ; 58(1): 570-579, 2024 Jan 09.
Artigo em Inglês | MEDLINE | ID: mdl-38150661

RESUMO

Chemical methods for the extraction and refinement of technologically critical rare earth elements (REEs) are energy-intensive, hazardous, and environmentally destructive. Current biobased extraction systems rely on extremophilic organisms and generate many of the same detrimental effects as chemical methodologies. The mesophilic methylotrophic bacterium Methylobacterium extorquens AM1 was previously shown to grow using electronic waste by naturally acquiring REEs to power methanol metabolism. Here we show that growth using electronic waste as a sole REE source is scalable up to 10 L with consistent metal yields without the use of harsh acids or high temperatures. The addition of organic acids increases REE leaching in a nonspecific manner. REE-specific bioleaching can be engineered through the overproduction of REE-binding ligands (called lanthanophores) and pyrroloquinoline quinone. REE bioaccumulation increases with the leachate concentration and is highly specific. REEs are stored intracellularly in polyphosphate granules, and genetic engineering to eliminate exopolyphosphatase activity increases metal accumulation, confirming the link between phosphate metabolism and biological REE use. Finally, we report the innate ability of M. extorquens to grow using other complex REE sources, including pulverized smartphones, demonstrating the flexibility and potential for use as a recovery platform for these critical metals.


Assuntos
Resíduo Eletrônico , Metais Terras Raras , Metais , Ligantes
2.
J Ind Microbiol Biotechnol ; 47(3): 319-328, 2020 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-32103460

RESUMO

Clostridium saccharoperbutylacetonicum N1-4 (Csa) is a historically significant anaerobic bacterium which can perform saccharolytic fermentations to produce acetone, butanol, and ethanol (ABE). Recent genomic analyses have highlighted this organism's potential to produce polyketide and nonribosomal peptide secondary metabolites, but little is known regarding the identity and function of these metabolites. This study provides a detailed bioinformatic analysis of seven biosynthetic gene clusters (BGCs) present in the Csa genome that are predicted to produce polyketides/nonribosomal peptides. An RNA-seq-based untargeted transcriptomic approach revealed that five of seven BGCs were expressed during ABE fermentation. Additional characterization of a highly expressed nonribosomal peptide synthetase gene led to the discovery of its associated metabolite and its biosynthetic pathway. Transcriptomic analysis suggested an association of this nonribosomal peptide synthetase gene with butanol tolerance, which was supported by butanol challenge assays.


Assuntos
Butanóis/metabolismo , Clostridium/metabolismo , Metabolismo Secundário , Acetona/metabolismo , Clostridium/genética , Etanol/metabolismo , Fermentação
3.
Annu Rev Chem Biomol Eng ; 13: 1-24, 2022 06 10.
Artigo em Inglês | MEDLINE | ID: mdl-35236086

RESUMO

Natural products are a diverse class of biologically produced compounds that participate in fundamental biological processes such as cell signaling, nutrient acquisition, and interference competition. Unique triple-bond functionalities like isonitriles and alkynes often drive bioactivity and may serve as indicators of novel chemical logic and enzymatic machinery. Yet, the biosynthetic underpinnings of these groups remain only partially understood, constraining the opportunity to rationally engineer biomolecules with these functionalities for applications in pharmaceuticals, bioorthogonal chemistry, and other value-added chemical processes. Here, we focus our review on characterized biosynthetic pathways for isonitrile and alkyne functionalities, their bioorthogonal transformations, and prospects for engineering their biosynthetic machinery for biotechnological applications.


Assuntos
Alcinos , Produtos Biológicos , Alcinos/química , Alcinos/metabolismo , Vias Biossintéticas
4.
PLoS One ; 16(5): e0251296, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34038425

RESUMO

Regular surveillance testing of asymptomatic individuals for SARS-CoV-2 has been center to SARS-CoV-2 outbreak prevention on college and university campuses. Here we describe the voluntary saliva testing program instituted at the University of California, Berkeley during an early period of the SARS-CoV-2 pandemic in 2020. The program was administered as a research study ahead of clinical implementation, enabling us to launch surveillance testing while continuing to optimize the assay. Results of both the testing protocol itself and the study participants' experience show how the program succeeded in providing routine, robust testing capable of contributing to outbreak prevention within a campus community and offer strategies for encouraging participation and a sense of civic responsibility.


Assuntos
COVID-19/diagnóstico , Avaliação de Programas e Projetos de Saúde , Saliva/virologia , Adulto , Idoso , COVID-19/epidemiologia , COVID-19/virologia , Teste para COVID-19/métodos , Feminino , Humanos , Masculino , Pessoa de Meia-Idade , RNA Viral/metabolismo , Reação em Cadeia da Polimerase Via Transcriptase Reversa , SARS-CoV-2/genética , SARS-CoV-2/isolamento & purificação , Normas Sociais , Inquéritos e Questionários , Universidades , Adulto Jovem
5.
Nat Commun ; 8(1): 1843, 2017 11 29.
Artigo em Inglês | MEDLINE | ID: mdl-29184190

RESUMO

Many heritable mutualisms, in which beneficial symbionts are transmitted vertically between host generations, originate as antagonisms with parasite dispersal constrained by the host. Only after the parasite gains control over its transmission is the symbiosis expected to transition from antagonism to mutualism. Here, we explore this prediction in the mutualism between the fungus Rhizopus microsporus (Rm, Mucoromycotina) and a beta-proteobacterium Burkholderia, which controls host asexual reproduction. We show that reproductive addiction of Rm to endobacteria extends to mating, and is mediated by the symbiont gaining transcriptional control of the fungal ras2 gene, which encodes a GTPase central to fungal reproductive development. We also discover candidate G-protein-coupled receptors for the perception of trisporic acids, mating pheromones unique to Mucoromycotina. Our results demonstrate that regulating host asexual proliferation and modifying its sexual reproduction are sufficient for the symbiont's control of its own transmission, needed for antagonism-to-mutualism transition in heritable symbioses. These properties establish the Rm-Burkholderia symbiosis as a powerful system for identifying reproductive genes in Mucoromycotina.


Assuntos
Burkholderia/fisiologia , Proteínas Fúngicas/genética , Regulação Fúngica da Expressão Gênica , Rhizopus/fisiologia , Simbiose/genética , Redes Reguladoras de Genes , Micorrizas/genética , Filogenia , Reprodução Assexuada/genética , Reprodução Assexuada/fisiologia , Rhizopus/genética , Esporos Fúngicos/fisiologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA