Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 26
Filtrar
1.
Nature ; 572(7768): 220-223, 2019 08.
Artigo em Inglês | MEDLINE | ID: mdl-31316202

RESUMO

The ability to directly monitor the states of electrons in modern field-effect devices-for example, imaging local changes in the electrical potential, Fermi level and band structure as a gate voltage is applied-could transform our understanding of the physics and function of a device. Here we show that micrometre-scale, angle-resolved photoemission spectroscopy1-3 (microARPES) applied to two-dimensional van der Waals heterostructures4 affords this ability. In two-terminal graphene devices, we observe a shift of the Fermi level across the Dirac point, with no detectable change in the dispersion, as a gate voltage is applied. In two-dimensional semiconductor devices, we see the conduction-band edge appear as electrons accumulate, thereby firmly establishing the energy and momentum of the edge. In the case of monolayer tungsten diselenide, we observe that the bandgap is renormalized downwards by several hundreds of millielectronvolts-approaching the exciton energy-as the electrostatic doping increases. Both optical spectroscopy and microARPES can be carried out on a single device, allowing definitive studies of the relationship between gate-controlled electronic and optical properties. The technique provides a powerful way to study not only fundamental semiconductor physics, but also intriguing phenomena such as topological transitions5 and many-body spectral reconstructions under electrical control.

2.
Nano Lett ; 24(17): 5117-5124, 2024 May 01.
Artigo em Inglês | MEDLINE | ID: mdl-38629940

RESUMO

Stacking monolayer semiconductors creates moiré patterns, leading to correlated and topological electronic phenomena, but measurements of the electronic structure underpinning these phenomena are scarce. Here, we investigate the properties of the conduction band in moiré heterobilayers of WS2/WSe2 using submicrometer angle-resolved photoemission spectroscopy with electrostatic gating. We find that at all twist angles the conduction band edge is the K-point valley of the WS2, with a band gap of 1.58 ± 0.03 eV. From the resolved conduction band dispersion, we deduce an effective mass of 0.15 ± 0.02 me. Additionally, we observe replicas of the conduction band displaced by reciprocal lattice vectors of the moiré superlattice. We argue that the replicas result from the moiré potential modifying the conduction band states rather than final-state diffraction. Interestingly, the replicas display an intensity pattern with reduced 3-fold symmetry, which we show implicates the pseudo vector potential associated with in-plane strain in moiré band formation.

3.
Proc Natl Acad Sci U S A ; 118(33)2021 Aug 17.
Artigo em Inglês | MEDLINE | ID: mdl-34385327

RESUMO

Dirac fermions play a central role in the study of topological phases, for they can generate a variety of exotic states, such as Weyl semimetals and topological insulators. The control and manipulation of Dirac fermions constitute a fundamental step toward the realization of novel concepts of electronic devices and quantum computation. By means of Angle-Resolved Photo-Emission Spectroscopy (ARPES) experiments and ab initio simulations, here, we show that Dirac states can be effectively tuned by doping a transition metal sulfide, [Formula: see text], through Co/Ni substitution. The symmetry and chemical characteristics of this material, combined with the modification of the charge-transfer gap of [Formula: see text] across its phase diagram, lead to the formation of Dirac lines, whose position in k-space can be displaced along the [Formula: see text] symmetry direction and their form reshaped. Not only does the doping x tailor the location and shape of the Dirac bands, but it also controls the metal-insulator transition in the same compound, making [Formula: see text] a model system to functionalize Dirac materials by varying the strength of electron correlations.

4.
Nano Lett ; 23(15): 7008-7013, 2023 Aug 09.
Artigo em Inglês | MEDLINE | ID: mdl-37466311

RESUMO

The recent discovery of strongly correlated phases in twisted transition-metal dichalcogenides (TMDs) highlights the significant impact of twist-induced modifications on electronic structures. In this study, we employed angle-resolved photoemission spectroscopy with submicrometer spatial resolution (µ-ARPES) to investigate these modifications by comparing valence band structures of twisted (5.3°) and nontwisted (AB-stacked) bilayer regions within the same WSe2 device. Relative to the nontwisted region, the twisted area exhibits pronounced moiré bands and ∼90 meV renormalization at the Γ-valley, substantial momentum separation between different layers, and an absence of flat bands at the K-valley. We further simulated the effects of lattice relaxation, which can flatten the Γ-valley edge but not the K-valley edge. Our results provide a direct visualization of twist-induced modifications in the electronic structures of twisted TMDs and elucidate their valley-dependent responses to lattice relaxation.

5.
Nat Mater ; 20(4): 473-479, 2021 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-33398124

RESUMO

Low-dimensional van der Waals materials have been extensively studied as a platform with which to generate quantum effects. Advancing this research, topological quantum materials with van der Waals structures are currently receiving a great deal of attention. Here, we use the concept of designing topological materials by the van der Waals stacking of quantum spin Hall insulators. Most interestingly, we find that a slight shift of inversion centre in the unit cell caused by a modification of stacking induces a transition from a trivial insulator to a higher-order topological insulator. Based on this, we present angle-resolved photoemission spectroscopy results showing that the real three-dimensional material Bi4Br4 is a higher-order topological insulator. Our demonstration that various topological states can be selected by stacking chains differently, combined with the advantages of van der Waals materials, offers a playground for engineering topologically non-trivial edge states towards future spintronics applications.

6.
Nano Lett ; 21(24): 10532-10537, 2021 Dec 22.
Artigo em Inglês | MEDLINE | ID: mdl-34851122

RESUMO

In electronic and optoelectronic devices made from van der Waals heterostructures, electric fields can induce substantial band structure changes which are crucial to device operation but cannot usually be directly measured. Here, we use spatially resolved angle-resolved photoemission spectroscopy to monitor changes in band alignment of the component layers, corresponding to band structure changes of the composite heterostructure system, that are produced by electrostatic gating. Our devices comprise graphene on a monolayer semiconductor, WSe2 or MoSe2, atop a boron nitride dielectric and a graphite gate. Applying a gate voltage creates an electric field that shifts the semiconductor bands relative to those in the graphene by up to 0.2 eV. The results can be understood in simple terms by assuming that the materials do not hybridize.

7.
Nano Lett ; 16(8): 4738-45, 2016 08 10.
Artigo em Inglês | MEDLINE | ID: mdl-27357620

RESUMO

Layered transition metal chalcogenides with large spin orbit coupling have recently sparked much interest due to their potential applications for electronic, optoelectronic, spintronics, and valleytronics. However, most current understanding of the electronic structure near band valleys in momentum space is based on either theoretical investigations or optical measurements, leaving the detailed band structure elusive. For example, the exact position of the conduction band valley of bulk MoS2 remains controversial. Here, using angle-resolved photoemission spectroscopy with submicron spatial resolution (micro-ARPES), we systematically imaged the conduction/valence band structure evolution across representative chalcogenides MoS2, WS2, and WSe2, as well as the thickness dependent electronic structure from bulk to the monolayer limit. These results establish a solid basis to understand the underlying valley physics of these materials, and also provide a link between chalcogenide electronic band structure and their physical properties for potential valleytronics applications.

8.
Nano Lett ; 15(2): 917-22, 2015 Feb 11.
Artigo em Inglês | MEDLINE | ID: mdl-25611528

RESUMO

The epitaxial growth of graphene on catalytically active metallic surfaces via chemical vapor deposition (CVD) is known to be one of the most reliable routes toward high-quality large-area graphene. This CVD-grown graphene is generally coupled to its metallic support resulting in a modification of its intrinsic properties. Growth on oxides is a promising alternative that might lead to a decoupled graphene layer. Here, we compare graphene on a pure metallic to graphene on an oxidized copper surface in both cases grown by a single step CVD process under similar conditions. Remarkably, the growth on copper oxide, a high-k dielectric material, preserves the intrinsic properties of graphene; it is not doped and a linear dispersion is observed close to the Fermi energy. Density functional theory calculations give additional insight into the reaction processes and help explaining the catalytic activity of the copper oxide surface.

9.
Phys Chem Chem Phys ; 17(1): 509-20, 2015 01 07.
Artigo em Inglês | MEDLINE | ID: mdl-25408223

RESUMO

Photoelectron spectroscopy studies of (001) oriented PbTi0.8Zr0.2O3 (PZT) single crystal layers with submicron resolution revealed areas with different Pb 5d binding energies, attributed to the different charge and polarization states of the film surface. Two novel effects are evidenced by using intense synchrotron radiation beam experiments: (i) the progressive increase of a low binding energy component for the Pb core levels (evidenced for both 5d and 4f, on two different measurement setups), which can be attributed to a partial decomposition of the PZT film at its surface and promoting the growth of metallic Pb during the photoemission process, with the eventuality of the progressive formation of areas with downwards ferroelectric polarization; (ii) for films annealed in oxygen under clean conditions (in an ultrahigh vacuum installation) a huge shift of the Pb 5d core levels (by 8-9 eV) towards higher binding energies is attributed to the formation of areas with depleted mobile charge carriers, whose surface density is insufficient to screen the depolarization field. This shift is attenuated progressively with time, as the sample is irradiated with high flux soft X-rays. The formation of these areas with strong internal electric field promotes these films as good candidates for photocatalysis and solar cells, since in the operation of these devices the ability to perform charge separation and to avoid electron-hole recombination is crucial.

10.
Nano Lett ; 13(10): 4697-701, 2013 Oct 09.
Artigo em Inglês | MEDLINE | ID: mdl-24004050

RESUMO

Unfortunately, the practical applications of Li-O2 batteries are impeded by poor rechargeability. Here, for the first time we show that superoxide radicals generated at the cathode during discharge react with carbon that contains activated double bonds or aromatics to form epoxy groups and carbonates, which limits the rechargeability of Li-O2 cells. Carbon materials with a low amount of functional groups and defects demonstrate better stability thus keeping the carbon will-o'-the-wisp lit for lithium-air batteries.

11.
ACS Nano ; 16(2): 1954-1962, 2022 Feb 22.
Artigo em Inglês | MEDLINE | ID: mdl-35073479

RESUMO

In stacks of two-dimensional crystals, mismatch of their lattice constants and misalignment of crystallographic axes lead to formation of moiré patterns. We show that moiré superlattice effects persist in twisted bilayer graphene (tBLG) with large twists and short moiré periods. Using angle-resolved photoemission, we observe dramatic changes in valence band topology across large regions of the Brillouin zone, including the vicinity of the saddle point at M and across 3 eV from the Dirac points. In this energy range, we resolve several moiré minibands and detect signatures of secondary Dirac points in the reconstructed dispersions. For twists θ > 21.8°, the low-energy minigaps are not due to cone anticrossing as is the case at smaller twist angles but rather due to moiré scattering of electrons in one graphene layer on the potential of the other which generates intervalley coupling. Our work demonstrates the robustness of the mechanisms which enable engineering of electronic dispersions of stacks of two-dimensional crystals by tuning the interface twist angles. It also shows that large-angle tBLG hosts electronic minigaps and van Hove singularities of different origin which, given recent progress in extreme doping of graphene, could be explored experimentally.

12.
Phys Chem Chem Phys ; 13(8): 3394-410, 2011 Feb 28.
Artigo em Inglês | MEDLINE | ID: mdl-21221435

RESUMO

Nitrogen is often used as an inert background atmosphere in solid state studies of electrode and reaction kinetics, of solid state studies of transport phenomena, and in applications e.g. solid oxide fuel cells (SOFC), sensors and membranes. Thus, chemical and electrochemical reactions of oxides related to or with dinitrogen are not supposed and in general not considered. We demonstrate by a steady state electrochemical polarisation experiments complemented with in situ photoelectron spectroscopy (XPS) that at a temperature of 450 °C dinitrogen can be electrochemically activated at the three phase boundary between N(2), a metal microelectrode and one of the most widely used solid oxide electrolytes--yttria stabilized zirconia (YSZ)--at potentials more negative than E = -1.25 V. The process is neither related to a reduction of the electrolyte nor to an adsorption process or a purely chemical reaction but is electrochemical in nature. Only at potentials more negative than E = -2 V did new components of Zr 3d and Y 3d signals with a lower formal charge appear, thus indicating electrochemical reduction of the electrolyte matrix. Theoretical model calculations suggest the presence of anionic intermediates with delocalized electrons at the electrode/electrolyte reaction interface. The ex situ SIMS analysis confirmed that nitrogen is incorporated and migrates into the electrolyte beneath the electrode.

13.
J Synchrotron Radiat ; 17(4): 445-50, 2010 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-20567075

RESUMO

The extensive upgrade of the experimental end-station of the SPECTROMICROSCOPY-3.2L beamline at Elettra synchrotron light source is reported. After the upgrade, angle-resolved photoemission spectroscopy from a submicrometre spot and scanning microscopy images monitoring the photoelectron signal inside selected acquisition angle and energy windows can be performed. As a test case, angle-resolved photoemission spectroscopy from single flakes of highly oriented pyrolitic graphite and imaging of the flakes with image contrast owing to rotation of the band dispersion of different flakes are presented.

14.
Nat Nanotechnol ; 15(7): 592-597, 2020 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-32451502

RESUMO

Van der Waals heterostructures form a unique class of layered artificial solids in which physical properties can be manipulated through controlled composition, order and relative rotation of adjacent atomic planes. Here we use atomic-resolution transmission electron microscopy to reveal the lattice reconstruction in twisted bilayers of the transition metal dichalcogenides, MoS2 and WS2. For twisted 3R bilayers, a tessellated pattern of mirror-reflected triangular 3R domains emerges, separated by a network of partial dislocations for twist angles θ < 2°. The electronic properties of these 3R domains, featuring layer-polarized conduction-band states caused by lack of both inversion and mirror symmetry, appear to be qualitatively different from those of 2H transition metal dichalcogenides. For twisted 2H bilayers, stable 2H domains dominate, with nuclei of a second metastable phase. This appears as a kagome-like pattern at θ ≈ 2°, transitioning at θ → 0 to a hexagonal array of screw dislocations separating large-area 2H domains. Tunnelling measurements show that such reconstruction creates strong piezoelectric textures, opening a new avenue for engineering of 2D material properties.

15.
ACS Nano ; 13(2): 2136-2142, 2019 Feb 26.
Artigo em Inglês | MEDLINE | ID: mdl-30676744

RESUMO

Atomically thin films of III-VI post-transition metal chalcogenides (InSe and GaSe) form an interesting class of two-dimensional semiconductors that feature a strong variation of their band gap as a function of the number of layers in the crystal and, specifically for InSe, an expected crossover from a direct gap in the bulk to a weakly indirect band gap in monolayers and bilayers. Here, we apply angle-resolved photoemission spectroscopy with submicrometer spatial resolution (µARPES) to visualize the layer-dependent valence band structure of mechanically exfoliated crystals of InSe. We show that for one-layer and two-layer InSe the valence band maxima are away from the Γ-point, forming an indirect gap, with the conduction band edge known to be at the Γ-point. In contrast, for six or more layers the band gap becomes direct, in good agreement with theoretical predictions. The high-quality monolayer and bilayer samples enable us to resolve, in the photoluminescence spectra, the band-edge exciton (A) from the exciton (B) involving holes in a pair of deeper valence bands, degenerate at Γ, with a splitting that agrees with both µARPES data and the results of DFT modeling. Due to the difference in symmetry between these two valence bands, light emitted by the A-exciton should be predominantly polarized perpendicular to the plane of the two-dimensional crystal, which we have verified for few-layer InSe crystals.

16.
Phys Rev Lett ; 99(4): 046803, 2007 Jul 27.
Artigo em Inglês | MEDLINE | ID: mdl-17678388

RESUMO

The diffusion mechanism of indium atoms along multiwalled carbon nanotubes is studied by means of photoemission spectromicroscopy and density functional theory calculations. The unusually high activation temperature for diffusion (approximately 700 K), the complex C 1s and In 3d5/2 spectra, and the calculated adsorption energies and diffusion barriers suggest that the indium transport is controlled by the concentration of defects in the C network and proceeds via hopping of indium adatoms between C vacancies.

17.
Nanoscale ; 9(31): 11055-11067, 2017 Aug 10.
Artigo em Inglês | MEDLINE | ID: mdl-28702656

RESUMO

The stability of thin films of lead zirco-titanate (PZT) under intense soft X-ray beams is investigated by time-resolved photoelectron spectromicroscopy with a lateral resolution below 1 micrometer. Surface dissociation is observed when samples are irradiated with intense (5 × 1023 photons per s per m2) soft X-rays, with promotion of reduced lead on the surface. On areas exhibiting outwards polarization (P(+)), the reduced lead is formed at the expense of P(+)-PZT. On areas presenting co-existing P(+) states with areas without out-of-plane polarization (P(0)), the reduced lead is formed at the expense of the P(0)-PZT component, while the P(+)-PZT remains constant. The main dissociation mechanism was found to be triggered by 'hot' electrons in the conduction band, with energies exceeding the surface dissociation energies. Dissociation occurs basically when the electron affinity is larger than the dissociation energy of PbO (for P(+) areas) or PbO- (for P(0) areas). Such mechanisms may be adapted for dissociation of other molecules on surfaces of ferroelectric thin films or for quantifying the stability of ferroelectric surfaces interacting with other radiation, with applications in the fields of photocatalysis or photovoltaic devices.

18.
Sci Adv ; 3(2): e1601832, 2017 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-28246636

RESUMO

Combining monolayers of different two-dimensional semiconductors into heterostructures creates new phenomena and device possibilities. Understanding and exploiting these phenomena hinge on knowing the electronic structure and the properties of interlayer excitations. We determine the key unknown parameters in MoSe2/WSe2 heterobilayers by using rational device design and submicrometer angle-resolved photoemission spectroscopy (µ-ARPES) in combination with photoluminescence. We find that the bands in the K-point valleys are weakly hybridized, with a valence band offset of 300 meV, implying type II band alignment. We deduce that the binding energy of interlayer excitons is more than 200 meV, an order of magnitude higher than that in analogous GaAs structures. Hybridization strongly modifies the bands at Γ, but the valence band edge remains at the K points. We also find that the spectrum of a rotationally aligned heterobilayer reflects a mixture of commensurate and incommensurate domains. These results directly answer many outstanding questions about the electronic nature of MoSe2/WSe2 heterobilayers and demonstrate a practical approach for high spectral resolution in ARPES of device-scale structures.

19.
J Phys Chem B ; 109(29): 14052-8, 2005 Jul 28.
Artigo em Inglês | MEDLINE | ID: mdl-16852764

RESUMO

The oxidation states formed during low-temperature oxidation (T < 500 K) of a Ru(0001) surface are identified with photoelectron spectromicroscopy and thermal desorption (TD) spectroscopy. Adsorption and consecutive incorporation of oxygen are studied following the distinct chemical shifts of the Ru 3d(5/2) core levels of the two topmost Ru layers. The evolution of the Ru 3d(5/2) spectra with oxygen exposure at 475 K and the corresponding O2 desorption spectra reveal that about 2 ML of oxygen incorporate into the subsurface region, residing between the first and second Ru layer. Our results suggest that the subsurface oxygen binds to the first and second layer Ru atoms, yielding a metastable surface "oxide", which represents the oxidation state of an atomically well ordered Ru(0001) surface under low-temperature oxidation conditions. Accumulation of more than 3 ML of oxygen is possible via defect-promoted penetration below the second layer when the initial Ru(0001) surface is disordered. Despite its higher capacity for oxygen accumulation, also the disordered Ru surface does not show features characteristic for the crystalline RuO2 islands. Development of lateral heterogeneity in the oxygen concentration is evidenced by the Ru 3d(5/2) images and microspot spectra after the onset of oxygen incorporation, which becomes very pronounced when the oxidation is carried out at T > 550 K. This is attributed to facilitated O incorporation and oxide nucleation in microregions with a high density of defects.

20.
Diabetes Care ; 26(3): 770-6, 2003 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-12610036

RESUMO

OBJECTIVE: Because alpha-lipoic acid (ALA), a potent antioxidant, prevents or improves nerve conduction attributes, endoneurial blood flow, and nerve (Na(+) K(+) ATPase activity in experimental diabetes and in humans and may improve positive neuropathic sensory symptoms, in this report we further assess the safety and efficacy of ALA on the Total Symptom Score (TSS), a measure of positive neuropathic sensory symptoms. RESEARCH DESIGN AND METHODS: Metabolically stable diabetic patients with symptomatic (stage 2) diabetic sensorimotor polyneuropathy (DSPN) were randomized to a parallel, double-blind study of ALA (600 mg) (n = 60) or placebo (n = 60) infused daily intravenously for 5 days/week for 14 treatments. The primary end point was change of the sum score of daily assessments of severity and duration of TSS. Secondary end points were sum scores of neuropathy signs (NIS), symptoms (NSC), attributes of nerve conduction, quantitative sensation tests (QSTs), and an autonomic test. RESULTS: At randomization, the groups were not significantly different by the criteria of metabolic control or neuropathic end points. After 14 treatments, the TSS of the ALA group had improved from baseline by an average of 5.7 points and the placebo group by an average of 1.8 points (P < 0.001). Statistically significant improvement from baseline of the ALA, as compared with the placebo group, was also found for each item of the TSS (lancinating and burning pain, asleep numbness and prickling), NIS, one attribute of nerve conduction, and global assessment of efficacy. CONCLUSIONS: Intravenous racemic ALA, a potent antioxidant, rapidly and to a significant and meaningful degree, improved such positive neuropathic sensory symptoms as pain and several other neuropathic end points. This improvement of symptoms was attributed to improved nerve pathophysiology, not to increased nerve fiber degeneration. Because of its safety profile and its effect on positive neuropathic sensory symptoms and other neuropathic end points, this drug appears to be a useful ancillary treatment for the symptoms of diabetic polyneuropathy.


Assuntos
Antioxidantes/administração & dosagem , Neuropatias Diabéticas/tratamento farmacológico , Ácido Tióctico/administração & dosagem , Idoso , Antioxidantes/efeitos adversos , Neuropatias Diabéticas/diagnóstico , Neuropatias Diabéticas/fisiopatologia , Feminino , Humanos , Injeções Intravenosas , Masculino , Pessoa de Meia-Idade , Condução Nervosa , Neurônios Aferentes/fisiologia , Ácido Tióctico/efeitos adversos , Resultado do Tratamento
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA