Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 53
Filtrar
Mais filtros

Base de dados
País/Região como assunto
Tipo de documento
Intervalo de ano de publicação
1.
J Am Chem Soc ; 144(46): 21157-21173, 2022 11 23.
Artigo em Inglês | MEDLINE | ID: mdl-36367461

RESUMO

The mechanism of action (MoA) of a clickable fatty acid analogue 8-(2-cyclobuten-1-yl)octanoic acid (DA-CB) has been investigated for the first time. Proteomics, metabolomics, and lipidomics were combined with a network analysis to investigate the MoA of DA-CB against Mycobacterium smegmatis (Msm). The metabolomics results showed that DA-CB has a general MoA related to that of ethionamide (ETH), a mycolic acid inhibitor that targets enoyl-ACP reductase (InhA), but DA-CB likely inhibits a step downstream from InhA. Our combined multi-omics approach showed that DA-CB appears to disrupt the pathway leading to the biosynthesis of mycolic acids, an essential mycobacterial fatty acid for both Msm and Mycobacterium tuberculosis (Mtb). DA-CB decreased keto-meromycolic acid biosynthesis. This intermediate is essential in the formation of mature mycolic acid, which is a key component of the mycobacterial cell wall in a process that is catalyzed by the essential polyketide synthase Pks13 and the associated ligase FadD32. The multi-omics analysis revealed further collateral alterations in bacterial metabolism, including the overproduction of shorter carbon chain hydroxy fatty acids and branched chain fatty acids, alterations in pyrimidine metabolism, and a predominate downregulation of proteins involved in fatty acid biosynthesis. Overall, the results with DA-CB suggest the exploration of this and related compounds as a new class of tuberculosis (TB) therapeutics. Furthermore, the clickable nature of DA-CB may be leveraged to trace the cellular fate of the modified fatty acid or any derived metabolite or biosynthetic intermediate.


Assuntos
Mycobacterium tuberculosis , Ácidos Micólicos , Ácidos Micólicos/metabolismo , Proteínas de Bactérias/metabolismo , Mycobacterium tuberculosis/metabolismo , Mycobacterium smegmatis/metabolismo , Ácidos Graxos/metabolismo , Antituberculosos/farmacologia , Antituberculosos/metabolismo
2.
Can J Microbiol ; 64(7): 439-453, 2018 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-29586541

RESUMO

The genus Aspergillus includes fungal species that cause major health issues of significant economic importance. These microorganisms are also the culprit for production of carcinogenic aflatoxins in grain storages, contaminating crops, and economically straining the production process. Aspergillus fumigatus is a very important pathogenic species, being responsible for high human morbidity and mortality on a global basis. The prevalence of these infections in immunosuppressed individuals is on the rise, and physicians struggle with the diagnosis of these deadly pathogens. Several virulence determinants facilitate fungal invasion and evasion of the host immune response. Metabolic functions are also important for virulence and drug resistance, since they allow fungi to obtain nutrients for their own survival and growth. Following a positive diagnostic identification, mortality rates remain high due, in part, to emerging resistance to frequently used antifungal drugs. In this review, we discuss the role of the main virulence, drug target, and drug resistance determinants. We conclude with the review of new technologies being developed to treat aspergillosis. In particular, microsphere and nanoparticle delivery systems are discussed in the context of improving drug bioavailability. Aspergillus will likely continue to cause problematic infections in immunocompromised patients, so it is imperative to improve treatment options.


Assuntos
Antifúngicos/administração & dosagem , Aspergillus fumigatus/efeitos dos fármacos , Aspergillus fumigatus/patogenicidade , Farmacorresistência Fúngica , Nanopartículas/administração & dosagem , Aspergilose/tratamento farmacológico , Humanos , Hospedeiro Imunocomprometido , Virulência/efeitos dos fármacos , Fatores de Virulência/metabolismo
3.
J Proteome Res ; 16(3): 1270-1279, 2017 03 03.
Artigo em Inglês | MEDLINE | ID: mdl-28121156

RESUMO

In mycobacteria, d-alanine is an essential precursor for peptidoglycan biosynthesis. The only confirmed enzymatic pathway to form d-alanine is through the racemization of l-alanine by alanine racemase (Alr, EC 5.1.1.1). Nevertheless, the essentiality of Alr in Mycobacterium tuberculosis and Mycobacterium smegmatis for cell survivability in the absence of d-alanine has been a point of controversy with contradictory results reported in the literature. To address this issue, we examined the effects of alr inactivation on the cellular metabolism of M. smegmatis. The M. smegmatis alr insertion mutant TAM23 exhibited essentially identical growth to wild-type mc2155 in the absence of d-alanine. NMR metabolomics revealed drastically distinct phenotypes between mc2155 and TAM23. A metabolic switch was observed for TAM23 as a function of supplemented d-alanine. In the absence of d-alanine, the metabolic response directed carbon through an unidentified transaminase to provide the essential d-alanine required for survival. The process is reversed when d-alanine is available, in which the d-alanine is directed to peptidoglycan biosynthesis. Our results provide further support for the hypothesis that Alr is not an essential function of M. smegmatis and that specific Alr inhibitors will have no bactericidal action.


Assuntos
Alanina/biossíntese , Redes e Vias Metabólicas , Mycobacterium smegmatis/metabolismo , Alanina/metabolismo , Alanina Racemase/metabolismo , Proteínas de Bactérias/metabolismo , Mutação , Mycobacterium smegmatis/genética , Peptidoglicano/biossíntese , Transaminases/metabolismo
4.
BMC Genomics ; 17 Suppl 7: 511, 2016 08 22.
Artigo em Inglês | MEDLINE | ID: mdl-27557119

RESUMO

BACKGROUND: We recently reported the identification of Bacillus sp. NRRL B-14911 that induces heart autoimmunity by generating cardiac-reactive T cells through molecular mimicry. This marine bacterium was originally isolated from the Gulf of Mexico, but no associations with human diseases were reported. Therefore, to characterize its biological and medical significance, we sought to determine and analyze the complete genome sequence of Bacillus sp. NRRL B-14911. RESULTS: Based on the phylogenetic analysis of 16S ribosomal RNA (rRNA) genes, sequence analysis of the 16S-23S rDNA intergenic transcribed spacers, phenotypic microarray, and matrix-assisted laser desorption ionization time-of-flight mass spectrometry, we propose that this organism belongs to the species Bacillus infantis, previously shown to be associated with sepsis in a newborn child. Analysis of the complete genome of Bacillus sp. NRRL B-14911 revealed several virulence factors including adhesins, invasins, colonization factors, siderophores and transporters. Likewise, the bacterial genome encodes a wide range of methyl transferases, transporters, enzymatic and biochemical pathways, and insertion sequence elements that are distinct from other closely related bacilli. CONCLUSIONS: The complete genome sequence of Bacillus sp. NRRL B-14911 provided in this study may facilitate genetic manipulations to assess gene functions associated with bacterial survival and virulence. Additionally, this bacterium may serve as a useful tool to establish a disease model that permits systematic analysis of autoimmune events in various susceptible rodent strains.


Assuntos
Bacillus/genética , Genoma Bacteriano/genética , Coração/microbiologia , Miocárdio/imunologia , Bacillus/patogenicidade , Genômica , Coração/fisiopatologia , Humanos , Anotação de Sequência Molecular , Miocárdio/patologia , Fenótipo , Filogenia , RNA Ribossômico 16S/genética , Análise de Sequência de DNA
5.
Microbiology (Reading) ; 162(4): 633-641, 2016 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-26888023

RESUMO

Mycobacterium avium subsp. paratuberculosis (MAP), the aetiological agent of Johne's disease, is one of the most important bacterial pathogens in ruminants. A thorough understanding of MAP pathogenesis is needed to develop new vaccines and diagnostic tests. The generation of comprehensive random transposon mutant libraries is a fundamental genetic technology to determine the role of genes in physiology and pathogenesis. In this study, whole MAP genome analysis compared the insertion sites for the mycobacterial transposon Tn5367 derived from the Mycobacterium smegmatis insertion sequence IS1096 and the mariner transposon MycoMarT7 carrying the Himar1 transposase. We determined that only MycoMarT7 provides a random representation of insertions in 99 % of all MAP genes. Analysis of the MAP K-10 genome indicated that 710 of all ORFs do not possess IS1096 recognition sites, while only 37 do not have the recognition site for MycoMarT7. Thus, a significant number of MAP genes remain underrepresented in insertion libraries from IS1096-derived transposons. Analysis of MycoMarT7 and Tn5367 mutants showed that Tn5367 has a predilection to insert within intergenic regions, suggesting that MycoMarT7 is the more adequate for generating a comprehensive library. However, we uncovered the novel finding that both transposons have loci-dependent biases, with Tn5367 being the most skewed. These loci-dependent transposition biases led to an underestimation of the number of independent mutants required to generate a comprehensive mutant library, leading to an overestimation of essential genes. Herein, we also demonstrated a useful platform for gene discovery and analysis by isolating three novel mutants for each transposon.

6.
J Proteome Res ; 13(2): 1065-76, 2014 Feb 07.
Artigo em Inglês | MEDLINE | ID: mdl-24303782

RESUMO

d-Cycloserine is an effective second line antibiotic used as a last resort to treat multi (MDR)- and extensively (XDR) drug resistant strains of Mycobacterium tuberculosis . d-Cycloserine interferes with the formation of peptidoglycan biosynthesis by competitive inhibition of alanine racemase (Alr) and d-alanine-d-alanine ligase (Ddl). Although the two enzymes are known to be inhibited, the in vivo lethal target is still unknown. Our NMR metabolomics work has revealed that Ddl is the primary target of DCS, as cell growth is inhibited when the production of d-alanyl-d-alanine is halted. It is shown that inhibition of Alr may contribute indirectly by lowering the levels of d-alanine, thus allowing DCS to outcompete d-alanine for Ddl binding. The NMR data also supports the possibility of a transamination reaction to produce d-alanine from pyruvate and glutamate, thereby bypassing Alr inhibition. Furthermore, the inhibition of peptidoglycan synthesis results in a cascading effect on cellular metabolism as there is a shift toward the catabolic routes to compensate for accumulation of peptidoglycan precursors.


Assuntos
Ciclosserina/farmacologia , Metabolômica , Mycobacterium tuberculosis/efeitos dos fármacos , Peptídeo Sintases/metabolismo , Ligantes , Mycobacterium tuberculosis/enzimologia , Mycobacterium tuberculosis/metabolismo , Ressonância Magnética Nuclear Biomolecular
7.
Sci Rep ; 14(1): 8941, 2024 04 18.
Artigo em Inglês | MEDLINE | ID: mdl-38637716

RESUMO

Johne's disease (JD) is a chronic enteric infection of dairy cattle worldwide. Mycobacterium avium subsp. paratuberculosis (MAP), the causative agent of JD, is fastidious often requiring eight to sixteen weeks to produce colonies in culture-a major hurdle in the diagnosis and therefore in implementation of optimal JD control measures. A significant gap in knowledge is the comprehensive understanding of the metabolic networks deployed by MAP to regulate iron both in-vitro and in-vivo. The genome of MAP carries MAP3773c, a putative metal regulator, which is absent in all other mycobacteria. The role of MAP3773c in intracellular iron regulation is poorly understood. In the current study, a field isolate (K-10) and an in-frame MAP3773c deletion mutant (ΔMAP3773c) derived from K-10, were exposed to iron starvation for 5, 30, 60, and 90 min and RNA-Seq was performed. A comparison of transcriptional profiles between K-10 and ΔMAP3773c showed 425 differentially expressed genes (DEGs) at 30 min time post-iron restriction. Functional analysis of DEGs in ΔMAP3773c revealed that pantothenate (Pan) biosynthesis, polysaccharide biosynthesis and sugar metabolism genes were downregulated at 30 min post-iron starvation whereas ATP-binding cassette (ABC) type metal transporters, putative siderophore biosynthesis, PPE and PE family genes were upregulated. Pathway analysis revealed that the MAP3773c knockout has an impairment in Pan and Coenzyme A (CoA) biosynthesis pathways suggesting that the absence of those pathways likely affect overall metabolic processes and cellular functions, which have consequences on MAP survival and pathogenesis.


Assuntos
Doenças dos Bovinos , Mycobacterium avium subsp. paratuberculosis , Paratuberculose , Animais , Bovinos , Ferro , Paratuberculose/genética , Paratuberculose/microbiologia , Redes e Vias Metabólicas/genética , Doenças dos Bovinos/microbiologia
8.
Vaccines (Basel) ; 11(6)2023 Jun 10.
Artigo em Inglês | MEDLINE | ID: mdl-37376474

RESUMO

Mycobacterium avium subsp. paratuberculosis (MAP) is the etiological agent of Johne's disease, a severe gastroenteritis of ruminants. This study developed a model cell culture system to rapidly screen MAP mutants with vaccine potential for apoptosis. Two wild-type strains, a transposon mutant, and two deletion mutant MAP strains (MOI of 10 with 1.2 × 106 CFU) were tested in murine RAW 264.7 macrophages to determine if they induce apoptosis and/or necrosis. Both deletion mutants were previously shown to be attenuated and immunogenic in primary bovine macrophages. All strains had similar growth rates, but cell morphology indicated that both deletion mutants were elongated with cell wall bulging. Cell death kinetics were followed by a real-time cellular assay to measure luminescence (apoptosis) and fluorescence (necrosis). A 6 h infection period was the appropriate time to assess apoptosis that was followed by secondary necrosis. Apoptosis was also quantified via DAPI-stained nuclear morphology and validated via flow cytometry. The combined analysis confirmed the hypothesis that candidate vaccine deletion mutants are pro-apoptotic in RAW 264.7 cells. In conclusion, the increased apoptosis seen in the deletion mutants correlates with the attenuated phenotype and immunogenicity observed in bovine macrophages, a property associated with good vaccine candidates.

9.
Vaccines (Basel) ; 11(4)2023 Apr 10.
Artigo em Inglês | MEDLINE | ID: mdl-37112733

RESUMO

The severe consequences of the Zika virus (ZIKV) infections resulting in congenital Zika syndrome in infants and the autoimmune Guillain-Barre syndrome in adults warrant the development of safe and efficacious vaccines and therapeutics. Currently, there are no approved treatment options for ZIKV infection. Herein, we describe the development of a bacterial ferritin-based nanoparticle vaccine candidate for ZIKV. The viral envelope (E) protein domain III (DIII) was fused in-frame at the amino-terminus of ferritin. The resulting nanoparticle displaying the DIII was examined for its ability to induce immune responses and protect vaccinated animals upon lethal virus challenge. Our results show that immunization of mice with a single dose of the nanoparticle vaccine candidate (zDIII-F) resulted in the robust induction of neutralizing antibody responses that protected the animals from the lethal ZIKV challenge. The antibodies neutralized infectivity of other ZIKV lineages indicating that the zDIII-F can confer heterologous protection. The vaccine candidate also induced a significantly higher frequency of interferon (IFN)-γ positive CD4 T cells and CD8 T cells suggesting that both humoral and cell-mediated immune responses were induced by the vaccine candidate. Although our studies showed that a soluble DIII vaccine candidate could also induce humoral and cell-mediated immunity and protect from lethal ZIKV challenge, the immune responses and protection conferred by the nanoparticle vaccine candidate were superior. Further, passive transfer of neutralizing antibodies from the vaccinated animals to naïve animals protected against lethal ZIKV challenge. Since previous studies have shown that antibodies directed at the DIII region of the E protein do not to induce antibody-dependent enhancement (ADE) of ZIKV or other related flavivirus infections, our studies support the use of the zDIII-F nanoparticle vaccine candidate for safe and enhanced immunological responses against ZIKV.

10.
Methods Mol Biol ; 2411: 95-104, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-34816400

RESUMO

Native hosts for the bacterial agent that causes Johne's disease are ruminants, which include cattle, sheep and goats among others. These large animals are often too costly to be used in testing experimental vaccines. In this chapter, we provide detailed methods to use an inexpensive and more manageable animal host, the ferret, to test efficacy and immunogenicity of live-attenuated Mycobacterium avium subspecies paratuberculosis (MAP) mutant strains prior to consideration as vaccine candidates.


Assuntos
Mycobacterium avium subsp. paratuberculosis , Paratuberculose , Animais , Vacinas Bacterianas , Bovinos , Furões , Mycobacterium avium subsp. paratuberculosis/genética , Paratuberculose/prevenção & controle , Ovinos , Vacinas Atenuadas
11.
Vaccines (Basel) ; 10(1)2022 Jan 14.
Artigo em Inglês | MEDLINE | ID: mdl-35062784

RESUMO

Babesiosis is a disease caused by tickborne hemoprotozoan apicomplexan parasites of the genus Babesia that negatively impacts public health and food security worldwide. Development of effective and sustainable vaccines against babesiosis is currently hindered in part by the absence of definitive host correlates of protection. Despite that, studies in Babesia microti and Babesia bovis, major causative agents of human and bovine babesiosis, respectively, suggest that early activation of innate immune responses is crucial for vertebrates to survive acute infection. Trained immunity (TI) is defined as the development of memory in vertebrate innate immune cells, allowing more efficient responses to subsequent specific and non-specific challenges. Considering that Mycobacterium bovis bacillus Calmette-Guerin (BCG), a widely used anti-tuberculosis attenuated vaccine, induces strong TI pro-inflammatory responses, we hypothesize that BCG TI may protect vertebrates against acute babesiosis. This premise is supported by early investigations demonstrating that BCG inoculation protects mice against experimental B. microti infection and recent observations that BCG vaccination decreases the severity of malaria in children infected with Plasmodium falciparum, a Babesia-related parasite. We also discuss the potential use of TI in conjunction with recombinant BCG vaccines expressing Babesia immunogens. In conclusion, by concentrating on human and bovine babesiosis, herein we intend to raise awareness of BCG TI as a strategy to efficiently control Babesia infection.

12.
Antimicrob Agents Chemother ; 55(1): 291-301, 2011 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-20956591

RESUMO

D-alanine:D-alanine ligase (EC 6.3.2.4; Ddl) catalyzes the ATP-driven ligation of two D-alanine (D-Ala) molecules to form the D-alanyl:D-alanine dipeptide. This molecule is a key building block in peptidoglycan biosynthesis, making Ddl an attractive target for drug development. D-Cycloserine (DCS), an analog of D-Ala and a prototype Ddl inhibitor, has shown promise for the treatment of tuberculosis. Here, we report the crystal structure of Mycobacterium tuberculosis Ddl at a resolution of 2.1 Å. This structure indicates that Ddl is a dimer and consists of three discrete domains; the ligand binding cavity is at the intersection of all three domains and conjoined by several loop regions. The M. tuberculosis apo Ddl structure shows a novel conformation that has not yet been observed in Ddl enzymes from other species. The nucleotide and D-alanine binding pockets are flexible, requiring significant structural rearrangement of the bordering regions for entry and binding of both ATP and D-Ala molecules. Solution affinity and kinetic studies showed that DCS interacts with Ddl in a manner similar to that observed for D-Ala. Each ligand binds to two binding sites that have significant differences in affinity, with the first binding site exhibiting high affinity. DCS inhibits the enzyme, with a 50% inhibitory concentration (IC(50)) of 0.37 mM under standard assay conditions, implicating a preferential and weak inhibition at the second, lower-affinity binding site. Moreover, DCS binding is tighter at higher ATP concentrations. The crystal structure illustrates potential drugable sites that may result in the development of more-effective Ddl inhibitors.


Assuntos
Antituberculosos/farmacologia , Ciclosserina/farmacologia , Mycobacterium tuberculosis/enzimologia , Peptídeo Sintases/antagonistas & inibidores , Peptídeo Sintases/química , Calorimetria , Dados de Sequência Molecular , Mycobacterium tuberculosis/efeitos dos fármacos , Peptídeo Sintases/genética , Peptídeo Sintases/metabolismo
13.
Comput Struct Biotechnol J ; 19: 4284-4299, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34429848

RESUMO

Tuberculosis (TB), one of the oldest and deadliest bacterial diseases, continues to cause serious global economic, health, and social problems. Current TB treatments are lengthy, expensive, and routinely ineffective against emerging drug resistant strains. Thus, there is an urgent need for the identification and development of novel TB drugs possessing comprehensive and specific mechanisms of action (MoAs). Metabolomics is a valuable approach to elucidating the MoA, toxicity, and potency of promising chemical leads, which is a critical step of the drug discovery process. Recent advances in metabolomics methodologies for deciphering MoAs include high-throughput screening techniques, the integration of multiple omics methods, mass spectrometry imaging, and software for automated analysis. This review describes recently introduced metabolomics methodologies and techniques for drug discovery, highlighting specific applications to the discovery of new antitubercular drugs and the elucidation of their MoAs.

14.
Infect Immun ; 78(8): 3570-7, 2010 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-20498259

RESUMO

Mycobacterium avium subsp. paratuberculosis, the agent of Johne's disease, infects ruminant hosts by translocation through the intestinal mucosa. A number of studies have suggested that M. avium subsp. paratuberculosis interacts with M cells in the Peyer's patches of the small intestine. The invasion of the intestinal mucosa by M. avium subsp. paratuberculosis and Mycobacterium avium subsp. hominissuis, a pathogen known to interact with intestinal cells, was compared. M. avium subsp. paratuberculosis was capable of invading the mucosa, but it was significantly less efficient at dissemination than M. avium subsp. hominissuis. B-cell knockout (KO) mice, which lack Peyer's patches, were used to demonstrate that M. avium subsp. paratuberculosis enters the intestinal mucosa through enterocytes in the absence of M cells. In addition, the results indicated that M. avium subsp. paratuberculosis had equal abilities to cross the mucosa in both Peyer's patch and non-Peyer's patch segments of normal mice. M. avium subsp. paratuberculosis was also shown to interact with epithelial cells by an alpha(5)beta(1) integrin-independent pathway. Upon translocation, dendritic cells ingest M. avium subsp. paratuberculosis, but this process does not lead to efficient dissemination of the infection. In summary, M. avium subsp. paratuberculosis interacts with the intestinal mucosa by crossing both Peyer's patches and non-Peyer's patch areas but does not translocate or disseminate efficiently.


Assuntos
Translocação Bacteriana , Enterócitos/microbiologia , Mycobacterium avium subsp. paratuberculosis/patogenicidade , Nódulos Linfáticos Agregados/microbiologia , Animais , Linfócitos B/imunologia , Células Dendríticas/imunologia , Células Epiteliais/microbiologia , Feminino , Mucosa Intestinal/microbiologia , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout
15.
Front Microbiol ; 11: 598, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-32390963

RESUMO

Intracellular iron concentration is tightly regulated to maintain cell viability. Iron plays important roles in electron transport, nucleic acid synthesis, and oxidative stress. A Mycobacterium avium subsp. paratuberculosis (MAP)-specific genomic island carries a putative metal transport operon that includes MAP3773c, which encodes a Fur-like protein. Although well characterized as a global regulator of iron homeostasis in multiple bacteria, the function of Fur (ferric uptake regulator) in MAP is unknown as this organism also carries IdeR (iron dependent regulator), a native iron regulatory protein specific to mycobacteria. Computational analysis using PRODORIC identified 23 different pathways involved in respiration, metabolism, and virulence that were likely regulated by MAP3773c. Thus, chromatin immunoprecipitation followed by high-throughput sequencing (ChIP-seq) was performed to confirm the putative regulon of MAP3773c (Fur-like protein) in MAP. ChIP-Seq revealed enriched binding to 58 regions by Fur under iron-replete and -deplete conditions, located mostly within open reading frames (ORFs). Three ChIP peaks were identified in genes that are directly related to iron regulation: MAP3638c (hemophore-like protein), MAP3736c (Fur box), and MAP3776c (ABC transporter). Fur box consensus sequence was identified, and binding specificity and dependence on Mn2+ availability was confirmed by a chemiluminescent electrophoresis mobility shift assay (EMSA). The results confirmed that MAP3773c is a Fur ortholog that recognizes a 19 bp DNA sequence motif (Fur box) and it is involved in metal homeostasis. This work provides a regulatory network of MAP Fur binding sites during iron-replete and -deplete conditions, highlighting unique properties of Fur regulon in MAP.

16.
Methods Mol Biol ; 2016: 117-125, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-31197714

RESUMO

While transposon mutagenesis has been developed for Mycobacterium avium subspecies paratuberculosis (Map), relatively few laboratories have adopted this important genetic tool to examine gene function and essentiality. Here we describe the construction of a Map transposon library using the Himar1 mariner transposon, but concepts can also be applied to the Tn5367 transposon, which has also been used by our group. Delivery of the transposon is by a temperature-sensitive phagemid, ϕMycoMarT7, and plating transductants requires patience and specialized media due to length of incubation required to observe colonies. Several transposon mutants obtained from these libraries have been tested in vaccine and pathogenesis studies. By providing the following detailed protocol herein, we expect to demystify the procedure and encourage additional investigators to incorporate transposon mutagenesis in their studies on Johne's disease.


Assuntos
Elementos de DNA Transponíveis , Mutagênese Insercional/métodos , Mycobacterium avium subsp. paratuberculosis/genética , Biblioteca Gênica , Humanos , Paratuberculose/microbiologia , Transdução Genética/métodos
17.
Vet Sci ; 6(2)2019 May 24.
Artigo em Inglês | MEDLINE | ID: mdl-31137605

RESUMO

Mycobacterium avium subspecies paratuberculosis (Map) is the etiologic agent of Johne's disease in ruminants and has been associated with Crohn's disease in humans. An effective control of Map by either vaccines or chemoprophylaxis is a paramount need for veterinary and possibly human medicine. Given the importance of fatty acids in the biosynthesis of mycolic acids and the mycobacterial cell wall, we tested novel amphiphilic C10 and C18 cyclobutene and cyclobutane fatty acid derivatives for Map inhibition. Microdilution minimal inhibitory concentrations (MIC) with 5 or 7 week endpoints were measured in Middlebrook 7H9 base broth media. We compared the Map MIC results with those obtained previously with Mycobacterium tuberculosis and Mycobacterium smegmatis. Several of the C18 compounds showed moderate efficacy (MICs 392 to 824 µM) against Map, while a higher level of inhibition (MICs 6 to 82 µM) was observed for M. tuberculosis for select analogs from both the C10 and C18 groups. For most of these analogs tested in M. smegmatis, their efficacy decreased in the presence of bovine or human serum albumin. Compound 5 (OA-CB, 1-(octanoic acid-8-yl)-2-octylcyclobutene) was identified as the best chemical lead against Map, which suggests derivatives with better pharmacodynamics may be of interest for evaluation in animal models.

18.
Infect Immun ; 76(5): 2099-105, 2008 May.
Artigo em Inglês | MEDLINE | ID: mdl-18285491

RESUMO

We have recently described the development of a luminescent Mycobacterium paratuberculosis strain of bovine origin expressing the luxAB genes of Vibrio harveyi. With this luminescent isolate, fastidious and costly enumeration of CFU by plating them on agar can be replaced by easy and rapid luminometry. Here, we have reevaluated the effect of Slc11a1 (formerly Nramp1) polymorphism on susceptibility to M. paratuberculosis, using this luminometric method. A series of inbred mouse strains were infected intravenously with luminescent M. paratuberculosis S-23 and monitored for bacterial replication in spleen, liver, and lungs for 12 weeks. The results indicate that, as for Mycobacterium avium subsp. avium, innate resistance to infection is genetically controlled by Slc11a1. In BALB/c, congenic BALB.B10-H2(b) (BALB/c background; H-2(b)), C57BL/6, and beige C57BL/6(bg/)(bg) mice (all Slc11a1(s)), bacterial numbers in spleen and liver remained unchanged during the first 4 weeks of infection, whereas in DBA/2 and congenic BALB/c.DBA/2 (C.D2) mice (both Slc11a1(r)) and in (C57BL/6 x DBA/2)F(1) mice (Slc11a1(s/r)), the bacterial numbers had decreased more than 10-fold at 4 weeks postinfection in both male and female mice. At later time points, additional differences in bacterial replication were observed between the susceptible mouse strains, particularly in the liver. Whereas bacterial numbers in the liver gradually decreased more than 100-fold in C57BL/6 mice between week 4 and week 12, bacterial numbers were stable in livers from BALB/c and beige C57BL/6(bg/)(bg) mice during this period. Mycobacterium-specific gamma interferon responses developed earlier and to a higher magnitude in C57BL/6 mice than in BALB/c mice and were lowest in resistant C.D2 mice.


Assuntos
Proteínas de Transporte de Cátions/genética , Proteínas de Transporte de Cátions/imunologia , Imunidade Inata , Mycobacterium avium subsp. paratuberculosis/imunologia , Paratuberculose/imunologia , Polimorfismo Genético , Animais , Contagem de Colônia Microbiana/métodos , Feminino , Genes Reporter , Interferon gama/biossíntese , Fígado/microbiologia , Proteínas Luminescentes/análise , Proteínas Luminescentes/genética , Pulmão/microbiologia , Masculino , Camundongos , Camundongos Endogâmicos BALB C , Camundongos Endogâmicos C57BL , Camundongos Endogâmicos DBA , Mycobacterium avium subsp. paratuberculosis/genética , Mycobacterium avium subsp. paratuberculosis/crescimento & desenvolvimento , Mycobacterium avium subsp. paratuberculosis/isolamento & purificação , Baço/microbiologia , Linfócitos T/imunologia , Fatores de Tempo
19.
Appl Environ Microbiol ; 74(6): 1687-95, 2008 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-18192416

RESUMO

Mycobacterium avium subsp. paratuberculosis is the causative pathogen of Johne's disease, a chronic inflammatory wasting disease in ruminants. This disease has been difficult to control because of the lack of an effective vaccine. To address this need, we adapted a specialized transduction system originally developed for M. tuberculosis and modified it to improve the efficiency of allelic exchange in order to generate site-directed mutations in preselected M. avium subsp. paratuberculosis genes. With our novel optimized method, the allelic exchange frequency was 78 to 100% and the transduction frequency was 1.1 x 10(-7) to 2.9 x 10(-7). Three genes were selected for mutagenesis: pknG and relA, which are genes that are known to be important virulence factors in M. tuberculosis and M. bovis, and lsr2, a gene regulating lipid biosynthesis and antibiotic resistance. Mutants were successfully generated with a virulent strain of M. avium subsp. paratuberculosis (M. avium subsp. paratuberculosis K10) and with a recombinant K10 strain expressing the green fluorescent protein gene, gfp. The improved efficiency of disruption of selected genes in M. avium subsp. paratuberculosis should accelerate development of additional mutants for vaccine testing and functional studies.


Assuntos
Proteínas de Bactérias/genética , Mutação , Mycobacterium avium subsp. paratuberculosis/genética , Alelos , Sequência de Bases , Southern Blotting , Deleção de Genes , Genes Bacterianos , Modelos Genéticos , Mutagênese Sítio-Dirigida , Mycobacterium avium subsp. paratuberculosis/patogenicidade , Reação em Cadeia da Polimerase , Recombinação Genética/genética , Reação em Cadeia da Polimerase Via Transcriptase Reversa , Virulência/genética
20.
Front Vet Sci ; 4: 187, 2017.
Artigo em Inglês | MEDLINE | ID: mdl-29164142

RESUMO

Mycobacterium avium subsp. paratuberculosis (MAP) is the etiologic agent of Johne's disease in ruminants causing chronic diarrhea, malnutrition, and muscular wasting. Neonates and young animals are infected primarily by the fecal-oral route. MAP attaches to, translocates via the intestinal mucosa, and is phagocytosed by macrophages. The ensuing host cellular immune response leads to granulomatous enteritis characterized by a thick and corrugated intestinal wall. We review various tissue culture systems, ileal loops, and mice, goats, and cattle used to study MAP pathogenesis. MAP can be detected in clinical samples by microscopy, culturing, PCR, and an enzyme-linked immunosorbent assay. There are commercial vaccines that reduce clinical disease and shedding, unfortunately, their efficacies are limited and may not engender long-term protective immunity. Moreover, the potential linkage with Crohn's disease and other human diseases makes MAP a concern as a zoonotic pathogen. Potential therapies with anti-mycobacterial agents are also discussed. The completion of the MAP K-10 genome sequence has greatly improved our understanding of MAP pathogenesis. The analysis of this sequence has identified a wide range of gene functions involved in virulence, lipid metabolism, transcriptional regulation, and main metabolic pathways. We also review the transposons utilized to generate random transposon mutant libraries and the recent advances in the post-genomic era. This includes the generation and characterization of allelic exchange mutants, transcriptomic analysis, transposon mutant banks analysis, new efforts to generate comprehensive mutant libraries, and the application of transposon site hybridization mutagenesis and transposon sequencing for global analysis of the MAP genome. Further analysis of candidate vaccine strains development is also provided with critical discussions on their benefits and shortcomings, and strategies to develop a highly efficacious live-attenuated vaccine capable of differentiating infected from vaccinated animals.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA