RESUMO
Selenium is an important earth-abundant and nontoxic semiconductor with numerous applications across semiconductor industries. Selenium has drawn attention from scientific communities for photovoltaics and imaging devices. Its usage as a photosensitive material largely involves the synthesis of the amorphous phase (a-Se) via various experimental techniques. However, the ground state crystalline phase of this material, the trigonal selenium (t-Se), a layered van der Waals solid, has not been extensively studied for its optimum electronic and optical properties. In this work, we present systematic studies based on density functional theory (DFT) for ultrathin (101Ì 0) surface slabs of t-Se. We report the surface energy as well as work function and electronic and optical properties as a function of number of layers for (101Ì 0) surface slabs to access its suitability for applications as a photosensitive material and compare these calculations to historical data.
RESUMO
Silicon carbide has been used in a variety of applications including solar cells due to its high stability. The high bandgap of pristine SiC, necessitates nonstoichiometric silicon carbide materials to be considered to tune the band gap for efficient solar light absorptions. In this regards, thermodynamically stable Si-rich SixC1-x materials can be used in solar cell applications without requiring the expensive pure grade silicon or pure grade silicon carbide. In this work, we have used density functional theory (DFT) to examine the stability of various polymorphs of silicon carbide such as 2H-SiC, 4H-SiC, 6H-SiC, 8H-SiC, 10H-SiC, wurtzite, naquite, and diamond structures to produce stable structures of Si-rich SixC1-x. We have systematically replaced the carbon atoms by silicon to lower the band gap and found that the configurations of these excess silicon atoms play a significant role in the stability of Si-rich SixC1-x. Hence, we have investigated different configurations of silicon and carbon atoms in these silicon carbide structures to obtain suitable SixC1-x materials with tailored band gaps. The results indicate that 6H-SixC1-x is thermodynamically the most favorable structure within the scope of this study. In addition, Si substitution for C sites in 6H-SiC enhances the solar absorption, as well as shifts the absorption spectra toward the lower photon energy region. In addition, in the visible range the absorption coefficients are much higher than the pristine SiC.
RESUMO
As a potential solar absorber material, Cu2S has proved its importance in the field of renewable energy. However, almost all the known minerals of Cu2S suffer from spontaneous Cu vacancy formation in the structure. The Cu vacancy formation causes the structure to possess very high p-type doping that leads the material to behave as a degenerate semiconductor. This vacancy formation tendency is a major obstacle for this material in this regard. A relatively new predicted phase of Cu2S which has an acanthite-like structure was found to be preferable than the well-known low chalcocite Cu2S. However, the Cu-vacancy formation tendency in this phase remained similar. We have found that alloying silver with this structure can help to reduce Cu vacancy formation tendency without altering its electronic property. The band gap of silver alloyed structure is higher than pristine acanthite Cu2S. In addition, Cu diffusion in the structure can be reduced with Ag doped in Cu sites. In this study, a systematic approach is presented within the density functional theory framework to study Cu vacancy formation tendency and diffusion in silver alloyed acanthite Cu2S, and proposed a possible route to stabilize Cu2S against Cu vacancy formations by alloying it with Ag.