Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 45
Filtrar
1.
Anal Chem ; 96(1): 12-17, 2024 01 09.
Artigo em Inglês | MEDLINE | ID: mdl-38109790

RESUMO

The serious impact of the Covid-19 pandemic underscores the need for rapid, reliable, and high-throughput diagnosis methods for infection. Current analytical methods, either point-of-care or centralized detection, are not able to satisfy the requirements of patient-friendly testing, high demand, and reliability of results. Here, we propose a two-point separation on-demand diagnostic strategy that uses laser desorption/ionization time-of-flight mass spectrometry (LDI-TOF MS) and adopts a stable yet cleavable ionic probe as a mass reporter. The use of this reporter enables ultrasensitive, interruptible, storable, restorable, and high-throughput on-demand detection. We describe a demonstration of the concept whereby we (i) design and synthesize a laser-cleavable reporter (DTPA), (ii) conjugate the reporter onto an antibody and verify the function of the conjugate, (iii) detect with good turnaround and high sensitivity the conjugated reporter, (iv) analyze quantitatively by using a laser-cleavable internal standard, and (v) identify negative and positive samples containing the spike protein. The protocol has excellent sensitivity (amol for the SARS-CoV-2 Spike S1 subunit antibody) without any amplification. This strategy is also applicable for the detection of other disease antigens besides SARS-CoV-2.


Assuntos
COVID-19 , SARS-CoV-2 , Humanos , COVID-19/diagnóstico , Pandemias , Reprodutibilidade dos Testes , Espectrometria de Massas/métodos , Imunoensaio/métodos
2.
J Am Chem Soc ; 144(22): 9990-9996, 2022 06 08.
Artigo em Inglês | MEDLINE | ID: mdl-35617307

RESUMO

Mechanically interlocked molecules (MIMs) possess unique architectures and nontraditional degrees of freedom that arise from well-defined topologies that are achieved through precise mechanical bonding. Incorporation of MIMs into materials can thus provide an avenue to discover new and emergent macroscale properties. Here, the synthesis of a phenanthroline-based [2]catenane crosslinker and its incorporation into polyacrylate organogels are described. Specifically, Cu(I) metalation and demetalation was used as a postgelation strategy to tune the mechanical properties of a gel by controlling the conformational motions of integrated MIMs. The organogels were prepared via thermally initiated free radical polymerization, and Cu(I) metal was added in MeOH to the pretreated, swollen gels. Demetalation of the gels was achieved by adding lithium cyanide and washing the gels. Changes in Young's and shear moduli, as well as tensile strength, were quantified through oscillatory shear rheology and tensile testing. The reported approach provides a general method for postgelation tuning of mechanical properties using metals and well-defined catenane topologies as part of a gel network architecture.


Assuntos
Catenanos , Géis , Reologia , Resistência à Tração
3.
Inorg Chem ; 59(15): 10450-10460, 2020 Aug 03.
Artigo em Inglês | MEDLINE | ID: mdl-32678584

RESUMO

The efficient synthesis of well-defined, linear oligocatenanes possessing multiple mechanical bonds remains a formidable challenge in the field of mechanically interlocked molecules. Here, a one-pot synthetic strategy is described to prepare a linear [4]catenate using orthogonal metal templation between a macrocycle precursor, composed of terpyridine and phenanthroline ligands spaced by flexible glycol linkers, and a closed phenanthroline-based molecular ring. Implementation of two simultaneous ring-closing metathesis reactions after metal complexation resulted in the formation of three mechanical bonds. The linear [4]catenate product was isolated in 55% yield as a mixture of topological diastereomers. The intermediate metal complexes and corresponding interlocked products (with and without metals) were characterized by nuclear magnetic resonance, mass spectrometry, gel permeation chromatography, and UV-vis absorption spectroscopy. We envision that this general synthetic strategy may pave the way for the synthesis of higher order linear oligocatenates/catenanes with precise molecular weights and four or more interlocking molecular rings.

4.
Macromol Rapid Commun ; 39(17): e1700781, 2018 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-29363212

RESUMO

The use of light to actuate materials is advantageous because it represents a cost-effective and operationally straightforward way to introduce energy into a stimuli-responsive system. Common strategies for photoinduced actuation of materials typically rely on light irradiation to isomerize azobenzene or spiropyran derivatives, or to induce unidirectional rotation of molecular motors incorporated into a 3D polymer network. Although interest in photoredox catalysis has risen exponentially in the past decade, there are far fewer examples where photoinduced electron transfer (PET) processes are employed to actuate materials. Here, a novel mode of actuation in a series of redox-responsive hydrogels doped with a visible-light-absorbing ruthenium-based photocatalyst is reported. The hydrogels are composed primarily of polyethylene glycol and low molar concentrations of a unimolecular electroactive polyviologen that is activated through a PET mechanism. The rate and degree of contraction of the hydrogels are measured over several hours while irradiating with blue light. Likewise, the change in mechanical properties-determined through oscillatory shear rheology experiments-is assessed as a function of polyviologen concentration. Finally, an artificial molecular muscle is fabricated using the best-performing hydrogel composition, and its ability to perform work, while irradiated, is demonstrated by lifting a small weight.


Assuntos
Hidrogéis/química , Rutênio/química , Catálise , Transporte de Elétrons , Luz , Oxirredução , Processos Fotoquímicos , Polietilenoglicóis/química
5.
J Am Chem Soc ; 139(36): 12704-12709, 2017 09 13.
Artigo em Inglês | MEDLINE | ID: mdl-28806074

RESUMO

Radical templation centered around a heterotrisradical tricationic inclusion complex DB•+⊂DAPQT2(•+), assembled from an equimolar mixture of a disubstituted 4,4'-bipyridinium radical cation (DB•+) and an asymmetric cyclophane bisradical dication (DAPQT2(•+)), affords a symmetric [2]catenane (SC·7PF6) and an asymmetric [2]catenane (AC·7PF6) on reaction of the 1:1 complex with diazapyrene and bipyridine, respectively. Both these highly charged [2]catenanes have been isolated as air-stable monoradicals and characterized by EPR spectroscopy. X-ray crystallography suggests that the unpaired electrons are delocalized in each case across two inner 4,4'-bipyridinium (BIPY2+) units forming a mixed-valence (BIPY2)•3+ state inside both [2]catenanes, an observation which is in good agreement with spin-density calculations using density functional theory. Electrochemical studies indicate that by replacing the BIPY2+ units in homo[2]catenane HC•7+-composed of two mechanically interlocked cyclobis(paraquat-p-phenylene) rings-with "zero", one, and two more highly conjugated diazapyrenium dication (DAP2+) units, respectively, a consecutive series of five, six, and seven redox states can be accessed in the resulting SC·7PF6 (0, 4+, 6+, 7+, and 8+), HC·7PF6 (0, 2+, 4+, 6+, 7+, and 8+), and AC·7PF6 (0, 1+, 2+, 4+, 6+, 7+, and 8+), respectively. These unique [2]catenanes present a promising prototype for the fabrication of high-density data memories.

6.
Acc Chem Res ; 49(2): 262-73, 2016 Feb 16.
Artigo em Inglês | MEDLINE | ID: mdl-26836816

RESUMO

Acting as hosts, cationic cyclophanes, consisting of π-electron-poor bipyridinium units, are capable of entering into strong donor-acceptor interactions to form host-guest complexes with various guests when the size and electronic constitution are appropriately matched. A synthetic protocol has been developed that utilizes catalytic quantities of tetrabutylammonium iodide to make a wide variety of cationic pyridinium-based cyclophanes in a quick and easy manner. Members of this class of cationic cyclophanes with boxlike geometries, dubbed Ex(n)Boxm(4+) for short, have been prepared by altering a number of variables: (i) n, the number of "horizontal" p-phenylene spacers between adjoining pyridinium units, to modulate the "length" of the cavity; (ii) m, the number of "vertical" p-phenylene spacers, to modulate the "width" of the cavity; and (iii) the aromatic linkers, namely, 1,4-di- and 1,3,5-trisubstituted units for the construction of macrocycles (ExBoxes) and macrobicycles (ExCages), respectively. This Account serves as an exploration of the properties that emerge from these structural modifications of the pyridinium-based hosts, coupled with a call for further investigation into the wealth of properties inherent in this class of compounds. By variation of only the aforementioned components, the role of these cationic receptors covers ground that spans (i) synthetic methodology, (ii) extraction and sequestration, (iii) catalysis, (iv) molecular electronics, (v) physical organic chemistry, and (vi) supramolecular chemistry. Ex(1)Box(4+) (or simply ExBox(4+)) has been shown to be a multipurpose receptor capable of binding a wide range of polycyclic aromatic hydrocarbons (PAHs), while also being a suitable component in switchable mechanically interlocked molecules. Additionally, the electronic properties of some host-guest complexes allow the development of artificial photosystems. Ex(2)Box(4+) boasts the ability to bind both π-electron-rich and -poor aromatic guests in different binding sites located within the same cavity. ExBox2(4+) forms complexes with C60 in which discrete arrays of aligned fullerenes result in single cocrystals, leading to improved material conductivities. When the substitution pattern of the Ex(n)Box(4+) series is changed to 1,3,5-trisubstituted benzenoid cores, the hexacationic cagelike compound, termed ExCage(6+), exhibits different kinetics of complexation with guests of varying sizes-a veritable playground for physical organic chemists. The organization of functionality with respect to structure becomes valuable as the number of analogues continues to grow. With each of these minor structural modifications, a wealth of properties emerge, begging the question as to what discoveries await and what properties will be realized with the continued exploration of this area of supramolecular chemistry based on a unique class of receptor molecules.

7.
J Am Chem Soc ; 138(11): 3667-70, 2016 Mar 23.
Artigo em Inglês | MEDLINE | ID: mdl-26909445

RESUMO

A tetracationic pyridinium-based cyclophane with a box-like geometry, incorporating two juxtaposed alkyne functions, has been synthesized. The triple bonds are reactive through cycloadditions toward dienes and azides, promoted by the electron-withdrawing nature of the pyridinium rings, as well as by the strain inherent in the cyclophane. The cycloadditions proceeded in high yields, with the cyclophane reacting faster than its acyclic analogue. While the cyclophane contains two reactive triple bonds, there is no evidence for a stable monofunctional intermediate-only starting material and the difunctional product have been detected by (1)H NMR spectroscopy. Molecular modeling of the energy landscape reveals a lower barrier for the kinetically favored second cycloaddition compared with the first one. This situation results in tandem cascading reactions within rigid cyclophanes, where reactions at a first triple bond induce increased reactivity at a distal second alkyne.


Assuntos
Alcinos/química , Derivados de Benzeno/química , Compostos de Piridínio/química , Viologênios/química , Adamantano/química , Alcinos/síntese química , Azidas/química , Derivados de Benzeno/síntese química , Reação de Cicloadição , Ciclopentanos/química , Espectroscopia de Ressonância Magnética , Compostos de Piridínio/síntese química , Termodinâmica , Difração de Raios X
8.
J Am Chem Soc ; 138(30): 9369-72, 2016 08 03.
Artigo em Inglês | MEDLINE | ID: mdl-27406892

RESUMO

Studies on the phase segregation of unimolecular block copolymers (BCPs) are limited by a lack of reliable, versatile methods for the synthesis of such polymers on the preparative scale. Herein, we describe an advancement of Iterative Exponential Growth (IEG) wherein chiral allyl-based IEG oligomers are subjected to thiol-ene reactions and converted into unimolecular BCPs. With this strategy we have synthesized uniform BCPs with molar masses up to 12.1 kDa on ∼1 g scale. BCPs composed of decane-based side chains and either triethyleneglycol- or thioglycerol-based side chains phase-segregate into hexagonal cylinder morphologies. The assembly is not driven by side-chain crystallization, but is instead the result of amorphous BCP assembly.

9.
J Am Chem Soc ; 138(38): 12494-501, 2016 09 28.
Artigo em Inglês | MEDLINE | ID: mdl-27626288

RESUMO

Single-nanoparticle (NP) combination chemotherapeutics are quickly emerging as attractive alternatives to traditional chemotherapy due to their ability to increase drug solubility, reduce off-target toxicity, enhance blood circulation lifetime, and increase the amount of drug delivered to tumors. In the case of NP-bound drugs, that is, NP-prodrugs, the current standard of practice is to assume that the subcellular mechanism of action for each drug released from the NP mirrors that of the unbound, free-drug. Here, we use an RNAi signature assay for the first time to examine the mechanism of action of multidrug-conjugated NP prodrugs relative to their small molecule prodrugs and native drug mechanisms of action. Additionally, the effective additive contribution of three different drugs in a single-NP platform is characterized. The results indicate that some platinum(IV) cisplatin prodrugs, although cytotoxic, may not have the expected mechanism of action for cisplatin. This insight was utilized to develop a novel platinum(IV) oxaliplatin prodrug and incorporate it into a three-drug-conjugated NP, where each drug's mechanism of action is preserved, to treat tumor-bearing mice with otherwise lethal levels of chemotherapy.


Assuntos
Camptotecina/uso terapêutico , Doxorrubicina/uso terapêutico , Nanopartículas/química , Compostos Organoplatínicos/uso terapêutico , Animais , Antineoplásicos/administração & dosagem , Antineoplásicos/uso terapêutico , Camptotecina/administração & dosagem , Carcinoma/tratamento farmacológico , Linhagem Celular Tumoral , Doxorrubicina/administração & dosagem , Sistemas de Liberação de Medicamentos , Camundongos , Estrutura Molecular , Neoplasias Experimentais/tratamento farmacológico , Compostos Organoplatínicos/administração & dosagem , Oxaliplatina , Pró-Fármacos/administração & dosagem , Interferência de RNA
10.
J Am Chem Soc ; 138(26): 8288-300, 2016 07 06.
Artigo em Inglês | MEDLINE | ID: mdl-27264680

RESUMO

The results of a systematic investigation of trisradical tricationic complexes formed between cyclobis(paraquat-p-phenylene) bisradical dicationic (CBPQT(2(•+))) rings and a series of 18 dumbbells, containing centrally located 4,4'-bipyridinium radical cationic (BIPY(•+)) units within oligomethylene chains terminated for the most part by charged 3,5-dimethylpyridinium (PY(+)) and/or neutral 3,5-dimethylphenyl (PH) groups, are reported. The complexes were obtained by treating equimolar amounts of the CBPQT(4+) ring and the dumbbells containing BIPY(2+) units with zinc dust in acetonitrile solutions. Whereas UV-Vis-NIR spectra revealed absorption bands centered on ca. 1100 nm with quite different intensities for the 1:1 complexes depending on the constitutions and charges on the dumbbells, titration experiments showed that the association constants (Ka) for complex formation vary over a wide range, from 800 M(-1) for the weakest to 180 000 M(-1) for the strongest. While Coulombic repulsions emanating from PY(+) groups located at the ends of some of the dumbbells undoubtedly contribute to the destabilization of the trisradical tricationic complexes, solid-state superstructures support the contention that those dumbbells with neutral PH groups at the ends of flexible and appropriately constituted links to the BIPY(•+) units stand to gain some additional stabilization from C-H···π interactions between the CBPQT(2(•+)) rings and the PH termini on the dumbbells. The findings reported in this Article demonstrate how structural changes implemented remotely from the BIPY(•+) units influence their non-covalent bonding interactions with CBPQT(2(•+)) rings. Different secondary effects (Coulombic repulsions versus C-H···π interactions) are uncovered, and their contributions to both binding strengths associated with trisradical interactions and the kinetics of associations and dissociations are discussed at some length, supported by extensive DFT calculations at the M06-D3 level. A fundamental understanding of molecular recognition in radical complexes has relevance when it comes to the design and synthesis of non-equilibrium systems.

11.
J Am Chem Soc ; 137(50): 15640-3, 2015 Dec 23.
Artigo em Inglês | MEDLINE | ID: mdl-26654320

RESUMO

Synthesis of an electrochemically addressable [2]catenane has been achieved following formation by templation of a [2]pseudorotaxane employing radically enhanced molecular recognition between the bisradical dication obtained on reduction of the tetracationic cyclophane, cyclobis(paraquat-p-phenylene), and the radical cation generated on reduction of a viologen disubstituted with p-xylylene units, both carrying tetraethylene glycol chains terminated by allyl groups. This inclusion complex was subjected to olefin ring-closing metathesis, which was observed to proceed under reduced conditions, to mechanically interlock the two components. Upon oxidation, Coulombic repulsion between the positively charged and mechanically interlocked components results in the adoption of a co-conformation where the newly formed alkene resides inside the cavity of the tetracationic cyclophane. (1)H NMR spectroscopic analysis of this hexacationic [2]catenane shows a dramatic upfield shift of the resonances associated with the olefinic and allylic protons as a result of them residing inside the tetracationic component. Further analysis shows high diastereoselectivity during catenation, as only a single (Z)-isomer is formed.

12.
J Am Chem Soc ; 137(6): 2392-9, 2015 Feb 18.
Artigo em Inglês | MEDLINE | ID: mdl-25581321

RESUMO

Although pristine C60 prefers to adopt a face-centered cubic packing arrangement in the solid state, it has been demonstrated that noncovalent-bonding interactions with a variety of molecular receptors lead to the complexation of C60 molecules, albeit usually with little or no control over their long-range order. Herein, an extended viologen-based cyclophane­ExBox2(4+)­has been employed as a molecular receptor which, not only binds C60 one-on-one, but also results in the columnar self-assembly of the 1:1 inclusion complexes under ambient conditions. These one-dimensional arrays of fullerenes stack along the long axis of needle-like single crystals as a consequence of multiple noncovalent-bonding interactions between each of the inclusion complexes. The electrical conductivity of these crystals is on the order of 10(-7) S cm(-1), even without any evacuation of oxygen, and matches the conductivity of high-quality, unfunctionalized C60-based materials that typically require stringent high-temperature vaporization techniques, along with the careful removal of oxygen and moisture, prior to measuring their conductance.


Assuntos
Fulerenos/química , Semicondutores , Cristalização , Cristalografia por Raios X
14.
Proc Natl Acad Sci U S A ; 109(29): 11546-51, 2012 Jul 17.
Artigo em Inglês | MEDLINE | ID: mdl-22685213

RESUMO

The kinetics and thermodynamics of intramolecular electron transfer (IET) can be subjected to redox control in a bistable [2]rotaxane comprised of a dumbbell component containing an electron-rich 1,5-dioxynaphthalene (DNP) unit and an electron-poor phenylene-bridged bipyridinium (P-BIPY(2+)) unit and a cyclobis (paraquat-p-phenylene) (CBPQT(4+)) ring component. The [2]rotaxane exists in the ground-state co-conformation (GSCC) wherein the CBPQT(4+) ring encircles the DNP unit. Reduction of the CBPQT(4+) leads to the CBPQT(2(•+)) diradical dication while the P-BIPY(2+) unit is reduced to its P-BIPY(•+) radical cation. A radical-state co-conformation (RSCC) results from movement of the CBPQT(2(•+)) ring along the dumbbell to surround the P-BIPY(•+) unit. This shuttling event induces IET to occur between the pyridinium redox centers of the P-BIPY(•+) unit, a property which is absent between these redox centers in the free dumbbell and in the 1:1 complex formed between the CBPQT(2(•+)) ring and the radical cation of methyl-phenylene-viologen (MPV(•+)). Using electron paramagnetic resonance (EPR) spectroscopy, the process of IET was investigated by monitoring the line broadening at varying temperatures and determining the rate constant (k(ET) = 1.33 x 10(7) s(-1)) and activation energy (ΔG(‡) = 1.01 kcal mol(-1)) for electron transfer. These values were compared to the corresponding values predicted, using the optical absorption spectra and Marcus-Hush theory.


Assuntos
Modelos Químicos , Conformação Proteica , Rotaxanos/química , Rotaxanos/síntese química , Espectroscopia de Ressonância de Spin Eletrônica , Transporte de Elétrons/fisiologia , Cinética , Oxirredução , Espectroscopia de Luz Próxima ao Infravermelho , Termodinâmica
15.
J Am Chem Soc ; 136(30): 10669-82, 2014 Jul 30.
Artigo em Inglês | MEDLINE | ID: mdl-24967502

RESUMO

Cyclophanes, especially those where pyridinium units in conjugation with each other are linked up face-to-face within platforms that are held approximately 7 Å apart by rigid linkers, are capable of forming inclusion complexes with polycyclic aromatic hydrocarbons (PAHs) with high binding affinities as a result of a combination of noncovalent bonding interactions, including face-to-face [π···π] stacking and orthogonal [C-H···π] interactions. Here, we report the template-directed, catalyst-assisted synthesis of a three-fold symmetric, extended pyridinium-based, cage-like host (ExCage(6+)) containing a total of six π-electron-deficient pyridinium units connected in a pairwise fashion by three bridging p-xylylene linkers, displayed in a trigonal (1,3,5) fashion around two opposing and parallel 1,3,5-tris(4-pyridinium)benzene platforms. The association constants (K(a)) of eight complexes have been measured by isothermal titration calorimetry (ITC) in acetonitrile and were found to span the range from 2.82 × 10(3) for naphthalene up to 5.5 × 10(6) M(-1) for perylene. The barriers to decomplexation, which were measured in DMF-d7 for phenanthrene, pyrene, triphenylene, and coronene by dynamic (1)H NMR spectroscopy undergo significant stepwise increases from 11.8 → 13.6 → 15.5 → >18.7 kcal mol(-1), respectively, while complexation experiments using rapid injection (1)H NMR spectroscopy in DMF-d7 at -55 °C revealed the barriers to complexation for pyrene and coronene to be 6.7 and >8 kcal mol(-1), respectively. The kinetic and thermodynamic data reveal that, in the case of ExCage(6+), while the smaller PAHs form complexes faster than the larger ones, the larger PAHs form stronger complexes than the smaller ones. It is also worthy of note that, as the complexes become stronger in the case of the larger and larger PAHs, the Rebek 55% solution formula for molecular recognition in the liquid state becomes less and less relevant.

16.
J Am Chem Soc ; 136(30): 10569-72, 2014 Jul 30.
Artigo em Inglês | MEDLINE | ID: mdl-25010450

RESUMO

An octacationic homo[2]catenane comprised of two mechanically interlocked cyclobis(paraquat-p-phenylene) rings has been obtained from the oxidation of the septacationic monoradical with nitrosonium hexafluoroantimonate. The nanoconfinement of normally repulsive bipyridinium units results in the enforced π-overlap of eight positively charged pyridinium rings in a volume of <1.25 nm(3). In the solid state, the torsional angles around the C-C bonds between the four pairs of pyridinium rings range between 16 and 30°, while the π-π stacking distances between the bipyridinium units are extended for the inside pair and contracted for the pairs on the outside--a consequence of Coulombic repulsion between the inner bipyridinium subunits. In solution, irradiation of the [2]catenane at 275 nm results in electron transfer from one of the paraphenylene rings to the inner bipyridinium dimer, leading to the generation of a temporary mixed-valence state within the rigid and robust homo[2]catenane.

17.
Chemistry ; 20(45): 14690-7, 2014 Nov 03.
Artigo em Inglês | MEDLINE | ID: mdl-25258209

RESUMO

Understanding the mechanism of efficient photoinduced electron-transfer processes is essential for developing molecular systems for artificial photosynthesis. Towards this goal, we describe the synthesis of a donor-acceptor dyad comprising a zinc porphyrin donor and a tetracationic cyclobis(paraquat-p-phenylene) (CBPQT(4+) ) acceptor. The X-ray crystal structure of the dyad reveals the formation of a dimeric motif through the intermolecular coordination between the triazole nitrogen and the central Zn metal of two adjacent units of the dyad. Photoinduced electron transfer within the dyad in MeCN was investigated by femtosecond and nanosecond transient absorption spectroscopy, as well as by transient EPR spectroscopy. Photoexcitation of the dyad produced a weakly coupled ZnP(+.) -CBPQT(3+.) spin-correlated radical-ion pair having a τ=146 ns lifetime and a spin-spin exchange interaction of only 0.23 mT. The long radical-ion-pair lifetime results from weak donor-acceptor electronic coupling as a consequence of having nine bonds between the donor and the acceptor, and the reduction in reorganization energy for electron transfer caused by charge dispersal over both paraquat units within CBPQT(3+.) .


Assuntos
Metaloporfirinas/química , Paraquat/análogos & derivados , Zinco/química , Materiais Biomiméticos/química , Transporte de Elétrons , Modelos Moleculares , Paraquat/química , Processos Fotoquímicos
18.
Org Biomol Chem ; 12(32): 6089-93, 2014 Aug 28.
Artigo em Inglês | MEDLINE | ID: mdl-25010832

RESUMO

Artificial muscles are an essential component for the development of next-generation prosthetic devices, minimally invasive surgical tools, and robotics. This communication describes the design, synthesis, and characterisation of a mechanically interlocked molecule (MIM), capable of switchable and reversible linear molecular motion in aqueous solution that mimics muscular contraction and extension. Compatibility with aqueous solution was achieved in the doubly bistable palindromic [3]rotaxane design by using radical-based molecular recognition as the driving force to induce switching.


Assuntos
Fenômenos Químicos , Rotaxanos/síntese química , Eletroquímica , Oxirredução , Espectroscopia de Prótons por Ressonância Magnética , Rotaxanos/química , Soluções , Espectrofotometria Ultravioleta
19.
Proc Natl Acad Sci U S A ; 108(51): 20416-21, 2011 Dec 20.
Artigo em Inglês | MEDLINE | ID: mdl-22135467

RESUMO

In donor-acceptor mechanically interlocked molecules that exhibit bistability, the relative populations of the translational isomers--present, for example, in a bistable [2]rotaxane, as well as in a couple of bistable [2]catenanes of the donor-acceptor vintage--can be elucidated by slow scan rate cyclic voltammetry. The practice of transitioning from a fast scan rate regime to a slow one permits the measurement of an intermediate redox couple that is a function of the equilibrium that exists between the two translational isomers in the case of all three mechanically interlocked molecules investigated. These intermediate redox potentials can be used to calculate the ground-state distribution constants, K. Whereas, (i) in the case of the bistable [2]rotaxane, composed of a dumbbell component containing π-electron-rich tetrathiafulvalene and dioxynaphthalene recognition sites for the ring component (namely, a tetracationic cyclophane, containing two π-electron-deficient bipyridinium units), a value for K of 10 ± 2 is calculated, (ii) in the case of the two bistable [2]catenanes--one containing a crown ether with tetrathiafulvalene and dioxynaphthalene recognition sites for the tetracationic cyclophane, and the other, tetrathiafulvalene and butadiyne recognition sites--the values for K are orders (one and three, respectively) of magnitude greater. This observation, which has also been probed by theoretical calculations, supports the hypothesis that the extra stability of one translational isomer over the other is because of the influence of the enforced side-on donor-acceptor interactions brought about by both π-electron-rich recognition sites being part of a macrocyclic polyether.


Assuntos
Eletroquímica/métodos , Antracenos/química , Simulação por Computador , Elétrons , Éteres/química , Cinética , Espectroscopia de Ressonância Magnética/métodos , Modelos Estatísticos , Modelos Teóricos , Conformação Molecular , Oxirredução , Rotaxanos/química , Termodinâmica
20.
Angew Chem Int Ed Engl ; 53(21): 5371-5, 2014 May 19.
Artigo em Inglês | MEDLINE | ID: mdl-24828229

RESUMO

Molecules capable of accepting and storing multiple electrons are crucial components of artificial photosynthetic systems designed to drive catalysts, such as those used to reduce protons to hydrogen. ExBox(4+), a boxlike cyclophane comprising two π-electron-poor extended viologen units tethered at both ends by two p-xylylene linkers, has been shown previously to accept an electron through space from a photoexcited guest. Herein is an investigation of an alternate, through-bond intramolecular electron-transfer pathway involving ExBox(4+) using a combination of transient absorption and femtosecond stimulated Raman spectroscopy (FSRS). Upon photoexcitation of ExBox(4+), an electron is transferred from one of the p-xylylene linkers to one of the extended viologen units in ca. 240 ps and recombines in ca. 4 ns. A crystal structure of the doubly reduced species ExBox(2+) was obtained.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA