Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros

Base de dados
Tipo de documento
Assunto da revista
País de afiliação
Intervalo de ano de publicação
1.
J Am Chem Soc ; 139(8): 2924-2927, 2017 03 01.
Artigo em Inglês | MEDLINE | ID: mdl-28219237

RESUMO

The deployment of nonaqueous redox flow batteries for grid-scale energy storage has been impeded by a lack of electrolytes that undergo redox events at as low (anolyte) or high (catholyte) potentials as possible while exhibiting the stability and cycling lifetimes necessary for a battery device. Herein, we report a new approach to electrolyte design that uses physical organic tools for the predictive targeting of electrolytes that possess this combination of properties. We apply this approach to the identification of a new pyridinium-based anolyte that undergoes 1e- electrochemical charge-discharge cycling at low potential (-1.21 V vs Fc/Fc+) to a 95% state-of-charge without detectable capacity loss after 200 cycles.

2.
Nat Chem ; 4(6): 498-502, 2012 May 06.
Artigo em Inglês | MEDLINE | ID: mdl-22614386

RESUMO

The oxidation of water to O(2) is a key challenge in the production of chemical fuels from electricity. Although several catalysts have been developed for this reaction, substantial challenges remain towards the ultimate goal of an efficient, inexpensive and robust electrocatalyst. Reported here is the first copper-based catalyst for electrolytic water oxidation. Copper-bipyridine-hydroxo complexes rapidly form in situ from simple commercially available copper salts and bipyridine at high pH. Cyclic voltammetry of these solutions at pH 11.8-13.3 shows large, irreversible currents, indicative of catalysis. The production of O(2) is demonstrated both electrochemically and with a fluorescence probe. Catalysis occurs at about 750 mV overpotential. Electrochemical, electron paramagnetic resonance and other studies indicate that the catalyst is a soluble molecular species, that the dominant species in the catalytically active solutions is (2,2'-bipyridine)Cu(OH)(2) and that this is among the most rapid homogeneous water-oxidation catalysts, with a turnover frequency of ~100 s(-1).


Assuntos
Cobre/química , Técnicas Eletroquímicas , Piridinas/química , Água/química , Catálise , Oxirredução
3.
Dalton Trans ; 40(43): 11562-70, 2011 Nov 21.
Artigo em Inglês | MEDLINE | ID: mdl-21956286

RESUMO

The diarylamido/bis(phosphine) PNP pincer ligand (2-(i)Pr(2)P-4-MeC(6)H(3))(2)N has been evaluated as a scaffold for supporting a BF(2) fragment. Compound (PNP)BF(2) (6) was prepared by simple metathesis of (PNP)Li (5) with Me(2)SBF(3). NMR spectra of 6 in solution are of apparent C(2) symmetry, suggestive of a symmetric environment about boron. However, a combination of X-ray structural studies, low-temperature NMR investigations, and DFT calculations consistently establish that the ground state of this molecule contains a classical four-coordinate boron with a PNBF(2) coordination environment, with one phosphine donor in PNP remaining "free". Fortuitous formation of a single crystal of (PNP)BF(2)·HBF(4) (7), in which the "free" phosphine is protonated, furnished another structure containing the same PNBF(2) environment about boron for comparison and the two PNBF(2) environments in 6 and 7 are virtually identical. DFT studies on several other diarylamido/bis(phosphine) pincer (PNP)BF(2) systems were carried out and all displayed a similar four coordinate PNBF(2) environment in the ground state structures. The symmetric appearance of the room-temperature NMR spectra is explained by the rapid interconversion between two degenerate four-coordinate, C(1)-symmetric ground-state forms. Lineshape analysis of the (1)H and (19)F NMR spectra over a temperature range of 180-243 K yielded the activation parameters ΔH(‡) = 8.1(3) kcal mol(-1) and ΔS(‡) = -6.0(15) eu, which are broadly consistent with the calculated values. Calculations indicate that the exchange of phosphine donors at the boron center proceeds by an intrinsically dissociative mechanism.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA