RESUMO
To date, very few mass spectrometry (MS)-based proteomics studies are available on the anterior and posterior lobes of the pituitary. In the past, MS-based investigations have focused exclusively on the whole pituitary gland or anterior pituitary lobe. In this study, for the first time, we performed a deep MS-based analysis of five anterior and five posterior matched lobes to build the first lobe-specific pituitary proteome map, which documented 4090 proteins with isoforms, mostly mapped into chromosomes 1, 2, and 11. About 1446 differentially expressed significant proteins were identified, which were studied for lobe specificity, biological pathway enrichment, protein-protein interaction, regions specific to comparison of human brain and other neuroendocrine glands from Human Protein Atlas to identify pituitary-enriched proteins. Hormones specific to each lobe were also identified and validated with parallel reaction monitoring-based target verification. The study identified and validated hormones, growth hormone and thyroid-stimulating hormone subunit beta, exclusively to the anterior lobe whereas oxytocin-neurophysin 1 and arginine vasopressin to the posterior lobe. The study also identified proteins POU1F1 (pituitary-specific positive transcription factor 1), POMC (pro-opiomelanocortin), PCOLCE2 (procollagen C-endopeptidase enhancer 2), and NPTX2 (neuronal pentraxin-2) as pituitary-enriched proteins and was validated for their lobe specificity using parallel reaction monitoring. In addition, three uPE1 proteins, namely THEM6 (mesenchymal stem cell protein DSCD75), FSD1L (coiled-coil domain-containing protein 10), and METTL26 (methyltransferase-like 26), were identified using the NeXtProt database, and depicted tumor markers S100 proteins having high expression in the posterior lobe. In summary, the study documents the first matched anterior and posterior pituitary proteome map acting as a reference control for a better understanding of functional and nonfunctional pituitary adenomas and extrapolating the aim of the Human Proteome Project towards the investigation of the proteome of life.
Assuntos
Adeno-Hipófise , Neuro-Hipófise , Humanos , Proteoma/metabolismo , Adeno-Hipófise/metabolismo , Hipófise/metabolismo , Neuro-Hipófise/metabolismoRESUMO
Despite recent advancements, the high mortality rate remains a concern in colon cancer (CAC). Identification of therapeutic markers could prove to be a great asset in CAC management. Multiple studies have reported hyperactivation of de novo lipogenesis (DNL), but its association with the pathology is unclear. This study aims to establish the importance as well as the prognostic and therapeutic potential of DNL in CAC. The key lipogenic enzymes fatty acid synthase along with ATP citrate lyase were quantified using an LC-MS/MS-based targeted proteomics approach in the samples along with the matched controls. The potential capacity of the proteins to distinguish between the tumor and controls was demonstrated using random forest-based class prediction analysis using the peptide intensities. Furthermore, in-depth proteomics of DNL inhibition in the CAC cell line revealed the significance of the pathway in proliferation and metastasis. DNL inhibition affected the major signaling pathways, including DNA repair, PI3K-AKT-mTOR pathway, membrane trafficking, proteasome, etc. The study revealed the upregulation of 26S proteasome machinery as a result of the treatment with subsequent induction of apoptosis. Again, in silico molecular docking-based drug repurposing was performed to find potential drug candidates. Furthermore, we have demonstrated that blocking DNL could be explored as a therapeutic option in CAC treatment.
Assuntos
Neoplasias do Colo , Proteômica , Humanos , Prognóstico , Cromatografia Líquida , Simulação de Acoplamento Molecular , Fosfatidilinositol 3-Quinases , Espectrometria de Massas em Tandem , Neoplasias do Colo/tratamento farmacológico , Neoplasias do Colo/genéticaRESUMO
Maharashtra was severely affected during the noxious second wave of COVID-19, with the highest number of cases recorded across India. The emergence of new symptoms and dysregulation of multiple organs resulted in high disease severity during the second wave which led to increased difficulties in understanding the molecular mechanisms behind the disease pathology. Exploring the underlying factors can help to relieve the burden on the medical communities to some extent by prioritizing the patients and, at the same time, opening avenues for improved treatments. In the current study, we have performed a mass-spectrometry-based proteomic analysis to investigate the disease pathology using nasopharyngeal swab samples collected from the COVID-19 patients in the Mumbai region of Maharashtra over the period of March-June 2021, the peak of the second wave. A total of 59 patients, including 32 non-severe and 27 severe cases, were considered for this proteomic study. We identified 23 differentially regulated proteins in severe patients as a host response to infection. In addition to the previously identified innate mechanisms of neutrophil and platelet degranulation, this study revealed significant alterations of anti-microbial peptide pathways in severe conditions, illustrating its role in the severity of the infectious strain of COVID-19 during the second wave. Furthermore, myeloperoxidase, cathepsin G, and profilin-1 were identified as potential therapeutic targets of the FDA-approved drugs dabrafenib, ZINC4097343, and ritonavir. This study has enlightened the role of the anti-microbial peptide pathway associated with the second wave in India and proposed its importance in potential therapeutics for COVID-19.
Assuntos
COVID-19 , Humanos , SARS-CoV-2 , Proteômica/métodos , Índia/epidemiologia , RitonavirRESUMO
This study, which performs an extensive mass spectrometry-based analysis of 19 brain regions from both left and right hemispheres, presents the first draft of the human brain interhemispheric proteome. This high-resolution proteomics data provides comprehensive coverage of 3300 experimentally measured (nonhypothetical) proteins across multiple regions, allowing the characterization of protein-centric interhemispheric differences and synapse biology, and portrays the regional mapping of specific regions for brain disorder biomarkers. In the context of the Human Proteome Project (HPP), the interhemispheric proteome data reveal specific markers like chimerin 2 (CHN2) in the cerebellar vermis, olfactory marker protein (OMP) in the olfactory bulb, and ankyrin repeat domain 63 (ANKRD63) in basal ganglia, in line with regional brain transcriptomes mapped in the Human Protein Atlas (HPA). In addition, an in silico analysis pipeline was used to predict the structure and function of the uncharacterized uPE1 protein ANKRD63, and parallel reaction monitoring (PRM) was applied to validate its region-specific expression. Finally, we have built the Interhemispheric Brain Proteome Map (IBPM) Portal (www.brainprot.org) to stimulate the scientific community's interest in the brain molecular landscape and accelerate and support research in neuroproteomics. Data are available via ProteomeXchange with identifier PXD019936.
Assuntos
Proteoma , Proteômica , Biomarcadores , Encéfalo , Humanos , Espectrometria de Massas , Proteoma/genéticaRESUMO
Despite the success of BCMA-targeting CAR-Ts in multiple myeloma, patients with high-risk cytogenetic features still relapse most quickly and are in urgent need of additional therapeutic options. Here, we identify CD70, widely recognized as a favorable immunotherapy target in other cancers, as a specifically upregulated cell surface antigen in high risk myeloma tumors. We use a structure-guided design to define a CD27-based anti-CD70 CAR-T design that outperforms all tested scFv-based CARs, leading to >80-fold improved CAR-T expansion in vivo. Epigenetic analysis via machine learning predicts key transcription factors and transcriptional networks driving CD70 upregulation in high risk myeloma. Dual-targeting CAR-Ts against either CD70 or BCMA demonstrate a potential strategy to avoid antigen escape-mediated resistance. Together, these findings support the promise of targeting CD70 with optimized CAR-Ts in myeloma as well as future clinical translation of this approach.
RESUMO
Colorectal cancer (CRC) is reportedly the second leading cause of cancer death worldwide. By the end of the decade, there will likely be more than one million fatalities worldwide from this cancer, with an estimated 2.2 million additional cases. We need new ways of thinking about cancer research. One approach is to deploy systems science using quantitative proteomics to obtain postgenomic and functional insights into cancer. The present study compares the tissue proteome of CRC (n = 10) with the matched peritumoral controls (n = 10) in samples obtained from the Indian subcontinent. When compared with the controls, a list of 22 substantially altered protein candidates was identified, which were associated with the growth, survival, and metastasis of the tumor. A list of the unique peptides from top significant proteins, including olfactomedin-4, alanyl aminopeptidase, and grancalcin was further validated using a parallel reaction monitoring-based targeted proteomics approach. In addition, biological pathway analysis showed perturbation in key biological processes, including dysregulation in purine metabolism, MYC targets in cancer, DNA repair, and replication, and leukocyte transendothelial migration, among others. The protein panel reported herein is also shown to be dysregulated in CRC and warrants further research toward understanding pathobiology, diagnostics, and therapeutics development in CRC.
Assuntos
Adenocarcinoma , Neoplasias do Colo , Neoplasias Colorretais , Humanos , Neoplasias Colorretais/metabolismo , Proteômica , Proteoma/análise , Transdução de Sinais , Biomarcadores TumoraisRESUMO
PURPOSE: Colorectal cancer (CRC) has been reported as the second leading cause of cancer death worldwide. The 5-year annual survival is around 50%, mainly due to late diagnosis, striking necessity for early detection. This study aims to identify autoantibody in patients' sera for early screening of cancer. EXPERIMENTAL DESIGN: The study used a high-density human proteome array with approximately 17,000 recombinant proteins. Screening of sera from healthy individuals, CRC from Indian origin, and CRC from middle-east Asia origin were performed. Bio-statistical analysis was performed to identify significant autoantibodies altered. Pathway analysis was performed to explore the underlying mechanism of the disease. RESULTS: The comprehensive proteomic analysis revealed dysregulation of 15 panels of proteins including CORO7, KCNAB1, WRAP53, NDUFS6, KRT30, and COLGALT2. Further biological pathway analysis for the top dysregulated autoantigenic proteins revealed perturbation in important biological pathways such as ECM degradation and cytoskeletal remodeling etc. CONCLUSIONS AND CLINICAL RELEVANCE: The generation of an autoimmune response against cancer-linked pathways could be linked to the screening of the disease. The process of immune surveillance can be detected at an early stage of cancer. Moreover, AAbs can be easily extracted from blood serum through the least invasive test for disease screening.
Assuntos
Biomarcadores Tumorais , Neoplasias Colorretais , Humanos , Biomarcadores Tumorais/metabolismo , Análise Serial de Proteínas , Proteômica , Autoanticorpos , Soro/metabolismo , Neoplasias Colorretais/metabolismoRESUMO
Meningioma, a primary brain tumor, is commonly encountered and accounts for 39% of overall CNS tumors. Despite significant progress in clinical research, conventional surgical and clinical interventions remain the primary treatment options for meningioma. Several proteomics and transcriptomics studies have identified potential markers and altered biological pathways; however, comprehensive exploration and data integration can help to achieve an in-depth understanding of the altered pathobiology. This study applied integrated meta-analysis strategies to proteomic and transcriptomic datasets comprising 48 tissue samples, identifying around 1832 common genes/proteins to explore the underlying mechanism in high-grade meningioma tumorigenesis. The in silico pathway analysis indicated the roles of extracellular matrix organization (EMO) and integrin binding cascades in regulating the apoptosis, angiogenesis, and proliferation responsible for the pathobiology. Subsequently, the expression of pathway components was validated in an independent cohort of 32 fresh frozen tissue samples using multiple reaction monitoring (MRM), confirming their expression in high-grade meningioma. Furthermore, proteome-level changes in EMO and integrin cell surface interactions were investigated in a high-grade meningioma (IOMM-Lee) cell line by inhibiting integrin-linked kinase (ILK). Inhibition of ILK by administrating Cpd22 demonstrated an anti-proliferative effect, inducing apoptosis and downregulating proteins associated with proliferation and metastasis, which provides mechanistic insight into the disease pathophysiology.
Assuntos
Neoplasias Meníngeas , Meningioma , Humanos , Meningioma/genética , Proteômica , Linhagem Celular Tumoral , Transformação Celular Neoplásica , Neoplasias Meníngeas/genética , Proliferação de Células , IntegrinasRESUMO
T-cell-mediated immunotherapies are limited by the extent to which cancer-specific antigens are homogenously expressed throughout a tumor. We reasoned that recurrent splicing aberrations in cancer represent a potential source of tumor-wide and public neoantigens, and to test this possibility, we developed a novel pipeline for identifying neojunctions expressed uniformly within a tumor across diverse cancer types. Our analyses revealed multiple neojunctions that recur across patients and either exhibited intratumor heterogeneity or, in some cases, were tumor-wide. We identified CD8+ T-cell clones specific for neoantigens derived from tumor-wide and conserved neojunctions in GNAS and RPL22 , respectively. TCR-engineered CD8 + T-cells targeting these mutations conferred neoantigen-specific tumor cell eradication. Furthermore, we revealed that cancer-specific dysregulation in splicing factor expression leads to recurrent neojunction expression. Together, these data reveal that a subset of neojunctions are both intratumorally conserved and public, providing the molecular basis for novel T-cell-based immunotherapies that address intratumoral heterogeneity.
RESUMO
PURPOSE: To identify the specific diagnostic biomarkers related to pituitary adenomas (PAs), we performed serological antibody profiles for three types of PAs, namely Acromegaly, Cushing's and Nonfunctional Pituitary Adenomas (NFPAs), using the human proteome (HuProt) microarray. This is the first study describing the serum autoantibody profile of PAs. EXPERIMENTAL DESIGN: We performed serological autoantibody profiling of four healthy controls, four Acromegaly, three Cushing's and three NFPAs patient samples to obtain their autoantibody profiles, which were used for studying expression, interaction and altered biological pathways. Further, significant autoantibodies of PAs were compared with data available for glioma, meningioma and AAgAtlas for their specificity. RESULTS: Autoantibody profile of PAs led to the identification of differentially expressed significant proteins such as AKNAD1 (AT-Hook Transcription Factor [AKNA] Domain Containing 1), NINJ1 (Nerve injury-induced protein 1), L3HYPDH (Trans-3-hydroxy-L-proline dehydratase), RHOG (Rho-related GTP-binding protein) and PTP4A1 (Protein Tyrosine Phosphatase Type IVA 1) in Acromegaly. Protein ABR (Active breakpoint cluster region-related protein), ST6GALNAC6 (ST6 N-acetylgalactosaminide alpha-2, 6-sialyltransferase 6), NOL3 (Nucleolar protein 3), ANXA8 (Annexin A8) and POLR2H (RNA polymerase II, I and III subunit H) showed an antigenic response in Cushing's patient's serum samples. Protein dipeptidyl peptidase 3 (DPP3) and reticulon-4 (RTN4) exhibited a very high antigenic response in NFPA patients. These proteins hold promise as potential autoantibody biomarkers in PAs.
Assuntos
Acromegalia , Adenoma , Neoplasias Hipofisárias , Humanos , Neoplasias Hipofisárias/genética , Proteoma , Adenoma/genética , Autoanticorpos , Proteínas de Ligação a DNA , Proteínas Nucleares , Fatores de Transcrição , Fatores de Crescimento Neural , Moléculas de Adesão Celular NeuronaisRESUMO
A considerable section of males suffered from COVID-19, with many experiencing long-term repercussions. Recovered males have been documented to have compromised fertility, albeit the mechanisms remain unclear. We investigated the impact of COVID-19 on semen proteome following complete clinical recovery using mass spectrometry. A label-free quantitative proteomics study involved 10 healthy fertile subjects and 17 COVID-19-recovered men. With 1% false discovery rate and >1 unique peptide stringency, MaxQuant analysis found 1099 proteins and 8503 peptides. Of the 48 differentially expressed proteins between the healthy and COVID-19-recovered groups, 21 proteins were downregulated and 27 were upregulated in COVID-19-recovered males. The major pathways involved in reproductive functions, such as sperm-oocyte recognition, testosterone response, cell motility regulation, adhesion regulation, extracellular matrix adhesion, and endopeptidase activity, were downregulated in COVID-19-recovered patients according to bioinformatics analysis. Furthermore, the targeted approach revealed significant downregulation of semenogelin 1 and prosaposin, two proteins related to male fertility. Therefore, we demonstrate the alteration of semen proteome in response to COVID-19, thus disrupting the male reproductive function despite the patient's clinical remission. Hence, to understand fertility-related biological processes triggered by this infection, a protracted evaluation of the consequences of COVID-19 in recovered men is warranted.
RESUMO
In plants, during growth and development, photoreceptors monitor fluctuations in their environment and adjust their metabolism as a strategy of surveillance. Phytochromes (Phys) play an essential role in plant growth and development, from germination to fruit development. FR-light (FR) insensitive mutant (fri) carries a recessive mutation in Phytochrome A and is characterized by the failure to de-etiolate in continuous FR. Here we used iTRAQ-based quantitative proteomics along with metabolomics to unravel the role of Phytochrome A in regulating central metabolism in tomato seedlings grown under FR. Our results indicate that Phytochrome A has a predominant role in FR-mediated establishment of the mature seedling proteome. Further, we observed temporal regulation in the expression of several of the late response proteins associated with central metabolism. The proteomics investigations identified a decreased abundance of enzymes involved in photosynthesis and carbon fixation in the mutant. Profound accumulation of storage proteins in the mutant ascertained the possible conversion of sugars into storage material instead of being used or the retention of an earlier profile associated with the mature embryo. The enhanced accumulation of organic sugars in the seedlings indicates the absence of photomorphogenesis in the mutant.