RESUMO
As a hydrogen carrier and a vital component in fertilizer production, ammonia (NH3) is set to play a crucial role in the planet's future. While its industrial production feeds half of the global population, it uses fossil fuels and emits greenhouse gases. To tackle this issue, photocatalytic nitrogen fixation using visible light is emerging as an effective alternative method. This strategy avoids carbon dioxide (CO2) emissions and harnesses the largest share of sunlight. In this work, we successfully incorporated a 5-nitro isophthalic acid linker into MOF-808 to introduce structural defects and open metal sites. This has allowed modulation of the electronic structure of the MOF and effectively reduced the band gap energy from 3.8 to 2.6 eV. Combination with g-C3N4 enhanced further NH3 production, as these two materials possess similar band gap energies, and g-C3N4 has shown excellent performance for this reaction. The nitro groups serve as acceptors, and their integration into the MOF structure allowed effective interaction with the free electron pairs on N-(C)3 in the g-C3N4 network nodes. Based on DFT calculations, it was concluded that the adsorption of N2 molecules on open metal sites caused a decrease in their triple bond energy. The modified MOF-808 showed superior performance compared with the other MOFs studied in terms of N2 photoreduction under visible light. This design concept offers valuable information about how to engineer band gap energy in MOF structures and their combination with appropriate semiconductors for solar-powered photocatalytic reactions, such as N2 or CO2 photoreduction.
RESUMO
Over the last years, we observed a significant increase in the number of published studies that focus on the synthesis and characterization of deep eutectic solvents (DESs). These materials are of particular interest mainly due to their physical and chemical stability, low vapor pressure, ease of synthesis, and the possibility of tailoring their properties through dilution or change of the ratio of parent substances (PS). DESs, considered as one of the greenest families of solvents, are used in many fields, such as organic synthesis, (bio)catalysis, electrochemistry, and (bio)medicine. DESs applications have already been reported in various review articles. However, these reports mainly described these components' basics and general properties without focusing on the particular, PS-wise, group of DESs. Many DESs investigated for potential (bio)medical applications comprise organic acids. However, due to the different aims of the reported studies, many of these substances have not yet been investigated thoroughly, which makes it challenging for the field to move forward. Herein, we propose distinguishing DESs comprising organic acids (OA-DESs) as a specific group derived from natural deep eutectic solvents (NADESs). This review aims to highlight and compare the applications of OA-DESs as antimicrobial agents and drug delivery enhancers-two essential fields in (bio)medical studies where DESs have already been implemented and proven their potential. From the survey of the literature data, it is evident that OA-DESs represent an excellent type of DESs for specific biomedical applications, owing to their negligible cytotoxicity, fulfilling the rules of green chemistry and being generally effective as drug delivery enhancers and antimicrobial agents. The main focus is on the most intriguing examples and (where possible) application-based comparison of particular groups of OA-DESs. This should highlight the importance of OA-DESs and give valuable clues on the direction the field can take.
Assuntos
Solventes Eutéticos Profundos , Sistemas de Liberação de Medicamentos , Solventes/química , Preparações Farmacêuticas , CatáliseRESUMO
This study investigated, for the first time, the antimicrobial properties of polyethylene glycol-functionalized poly(N-phenylglycine) nanoparticles (PNPG-PEG NPs). PNPG-PEG NPs exhibit high extinction coefficient in the near-infrared (NIR) region; they can convert light energy into heat energy with high thermal transformation efficiency. Additionally, they can generate cytotoxic reactive oxygen species (ROS) upon light irradiation. Also, PNPG-PEG NPs are not cytotoxic. All these properties make them appropriate for combined dual-modal photothermal and photodynamic therapies. The antibacterial activity of PNPG-PEG NPs was assessed using Escherichia coli (Gram-negative) and Staphylococcus aureus (Gram-positive) pathogenic strains. The results revealed that NIR light (810 nm) irradiation for 10 min could kill effectively the planktonic bacteria and destroy Escherichia coli and Staphylococcus aureus biofilms. The results demonstrated that PNPG-PEG NPs represent a very effective nanoplatform for killing of pathogenic bacteria.
Assuntos
Nanopartículas , Fotoquimioterapia , Antibacterianos/farmacologia , Escherichia coli , Glicina/análogos & derivados , Staphylococcus aureusRESUMO
Monitoring blood glucose levels for diabetic patients is critical to achieve tight glycaemic control. As none of the current antidiabetic treatments restore lost functional ß-cell mass in diabetic patients, insulin injections and the use of insulin pumps are most widely used in the management of glycaemia. The use of advanced and intelligent chemical engineering, together with the incorporation of micro- and nanotechnological-based processes have lately revolutionized diabetic management. The start of this concept goes back to 1974 with the description of an electrode that repeatedly measures the level of blood glucose and triggers insulin release from an infusion pump to enter the blood stream from a small reservoir upon need. Next to the insulin pumps, other drug delivery routes, including nasal, transdermal and buccal, are currently investigated. These processes necessitate competences from chemists, engineers-alike and innovative views of pharmacologists and diabetologists. Engineered micro and nanostructures hold a unique potential when it comes to drug delivery applications required for the treatment of diabetic patients. As the technical aspects of chemistry, biology and informatics on medicine are expanding fast, time has come to step back and to evaluate the impact of technology-driven chemistry on diabetics and how the bridges from research laboratories to market products are established. In this review, the large variety of therapeutic approaches proposed in the last five years for diabetic patients are discussed in an applied context. A survey of the state of the art of closed-loop insulin delivery strategies in response to blood glucose level fluctuation is provided together with insights into the emerging key technologies for diagnosis and drug development. Chemical engineering strategies centered on preserving and regenerating functional pancreatic ß-cell mass are evoked in addition as they represent a permanent solution for diabetic patients.
Assuntos
Diabetes Mellitus/prevenção & controle , Animais , Técnicas Biossensoriais/instrumentação , Técnicas Biossensoriais/métodos , Glicemia/análise , Diabetes Mellitus/patologia , Diabetes Mellitus/terapia , Sistemas de Liberação de Medicamentos/instrumentação , Sistemas de Liberação de Medicamentos/métodos , Terapia Genética , Humanos , Hipoglicemiantes/administração & dosagem , Hipoglicemiantes/química , Insulina/administração & dosagem , Insulina/química , Células Secretoras de Insulina/citologia , Células Secretoras de Insulina/metabolismoRESUMO
In the fight against prostate cancer (PCa), TRPM8 is one of the most promising clinical targets. Indeed, several studies have highlighted that TRPM8 involvement is key in PCa progression because of its impact on cell proliferation, viability, and migration. However, data from the literature are somewhat contradictory regarding the precise role of TRPM8 in prostatic carcinogenesis and are mostly based on in vitro studies. The purpose of this study was to clarify the role played by TRPM8 in PCa progression. We used a prostate orthotopic xenograft mouse model to show that TRPM8 overexpression dramatically limited tumor growth and metastasis dissemination in vivo. Mechanistically, our in vitro data revealed that TRPM8 inhibited tumor growth by affecting the cell proliferation and clonogenic properties of PCa cells. Moreover, TRPM8 impacted metastatic dissemination mainly by impairing cytoskeleton dynamics and focal adhesion formation through the inhibition of the Cdc42, Rac1, ERK, and FAK pathways. Lastly, we proved the in vivo efficiency of a new tool based on lipid nanocapsules containing WS12 in limiting the TRPM8-positive cells' dissemination at metastatic sites. Our work strongly supports the protective role of TRPM8 on PCa progression, providing new insights into the potential application of TRPM8 as a therapeutic target in PCa treatment.
Assuntos
Neoplasias da Próstata , Canais de Cátion TRPM , Animais , Carcinogênese/metabolismo , Linhagem Celular Tumoral , Movimento Celular , Proliferação de Células , Humanos , Masculino , Proteínas de Membrana/metabolismo , Camundongos , Metástase Neoplásica/patologia , Próstata/patologia , Neoplasias da Próstata/metabolismo , Canais de Cátion TRPM/genética , Canais de Cátion TRPM/metabolismoRESUMO
Dodecyltrimethylammonium chloride (DTAC) was trapped into maltodextrins/pectin spray dried microcapsules to improve its activity against Salmonella enteritidis and Staphylococcus aureus biofilms. Two different microcapsules were prepared: uncomplexed DTAC-microcapsules (UDM), containing DTAC and maltodextrins; and complexed DTAC-microcapsules (CDM) containing DTAC complexed with pectin and maltodextrins. The minimum inhibitory concentrations (MIC) of both free and microencapsulated DTAC were investigated against S. Enteritidis and S. aureus. The MICs of DTAC were significantly lower when encapsulated. CDM treatment resulted in a 2 and 3.2 log reduction in S. aureus and S. Enteritidis biofilm culturable biomass, respectively. Microencapsulation reduced the cytotoxicity of DTAC by up to 32-fold. Free DTAC and CDM targeted the cell membrane resulting in the leakage of the intracellular molecules and subsequent cell death. The development of DTAC microcapsules reduced the amount of DTAC required to maintain the high standards of cleanliness and hygiene required in the food processing industries.
Assuntos
Salmonella enteritidis , Staphylococcus aureus , Biofilmes , Cápsulas , Compostos de Amônio QuaternárioRESUMO
A mandatory step in any sensor fabrication is the introduction of analyte-specific recognition elements to the transducer surface. In this study, the possibility to anchor ß-cyclodextrin-modified dopamine to a reduced graphene oxide based electrochemical transducer for the sensitive and selective sensing of folic acid is demonstrated. The sensor displays good electrocatalytic activity toward the oxidation of folic acid. The strong affinity of the surface-confined ß-cyclodextrin for folic acid, together with favorable electron transfer characteristics, resulted in a sensor with a detection limit of 1 nM for folic acid and a linear response up to 10 µM. Testing of the sensor on serum samples from healthy individuals and patients diagnosed with folic acid deficiency validated the sensing capability. Graphical abstract.
Assuntos
Ciclodextrinas/química , Dopamina/química , Eletrodos , Ácido Fólico/sangue , Grafite/química , Técnicas Eletroquímicas/métodos , Humanos , Limite de Detecção , Oxirredução , Espectroscopia FotoeletrônicaRESUMO
In this review, the use of mesoporous silica nanoparticles for photodynamic therapy (PDT) applications is described for the year 2017. Since the pioneering work in 2009, nanosystems involving mesoporous silica nanoparticles have gained in complexity with a sophisticated core-shell system able to perform multi-imaging and multi-therapies, not only for cancer diseases but also for anti-microbial therapy, atherosclerosis, or Alzheimer disease. Near-infrared, excitation light based on up-converting systems, X-rays or persistent luminescent systems are described for deeper tissue treatments.
Assuntos
Nanopartículas/química , Neoplasias/tratamento farmacológico , Fotoquimioterapia , Fármacos Fotossensibilizantes/farmacologia , Dióxido de Silício/farmacologia , Doença de Alzheimer/tratamento farmacológico , Aterosclerose/tratamento farmacológico , Bactérias/efeitos dos fármacos , Tamanho da Partícula , Fármacos Fotossensibilizantes/química , Porosidade , Dióxido de Silício/química , Propriedades de SuperfícieRESUMO
Spinel Co2SnO4 nanoparticles are synthesized by a facile hydrothermal route in alkaline solution using SnCl4 and CoCl2 as precursors. The structure, morphology and chemical composition of the nanoparticles are characterized by X-ray diffraction (XRD), transmission electron microscopy (TEM), energy dispersive X-ray (EDX), Raman spectroscopy, X-ray photoelectron spectroscopy (XPS) and thermogravimetric analysis (TGA). The catalytic performance of the Co2SnO4 nanoparticles is thoroughly evaluated for peroxymonosulfate (PMS) activation for removal of rhodamine B (RhB) and pentachlorophenol (PCP) from water. The influence of different process parameters on the RhB degradation efficiency is examined and the catalytic stability is evaluated. Under optimized conditions, the Co2SnO4/PMS system is very efficient with a full degradation of RhB and PCP in less than 10 min at room temperature, as revealed by high performance liquid chromatography (HPLC) analysis. Quenching experiments suggested that sulfate radicals (SO4Ë-) are the main active species in the degradation process. Moreover, the Co2SnO4 catalyst is stable without any apparent activity loss after 5 cycling runs.
RESUMO
Nanodiamonds (NDs) are among the most promising new carbon based materials for biomedical applications, and the simultaneous integration of various functions onto NDs is an urgent necessity. A multifunctional nanodiamond based formulation is proposed here. Our strategy relies on orthogonal surface modification using different dopamine anchors. NDs simultaneously functionalized with triethylene glycol (EG) and azide (-N3) functions were fabricated through a stoichiometrically controlled integration of the dopamine ligands onto the surface of hydroxylated NDs. The presence of EG functionalities rendered NDs soluble in water and biological media, while the -N3 group allowed postsynthetic modification of the NDs using "click" chemistry. As a proof of principle, alkynyl terminated di(amido amine) ligands were linked to these ND particles.
Assuntos
Nanodiamantes/química , Azidas/química , Polietilenoglicóis/química , Propriedades de SuperfícieRESUMO
Multivalent interactions are omnipresent in biology and confer biological systems with dramatically enhanced affinities towards different receptors. Such multivalent binding interactions have lately been considered for the development of new therapeutic strategies against bacterial and viral infections. Multivalent polymers, dendrimers, and liposomes have successfully targeted pathogenic interactions. While a high synthetic effort was often needed for the development of such therapeutics, the integration of multiple ligands onto nanostructures turned to be a viable alternative. Particles modified with multiple ligands have the additional advantage of creating a high local concentration of binding molecules. This review article will summarize the different nanoparticle-based approaches currently available for the treatment of viral infections.
Assuntos
Nanoestruturas/uso terapêutico , Viroses/tratamento farmacológico , Portadores de Fármacos , Modelos Biológicos , Proteínas do Envelope Viral/química , Replicação ViralRESUMO
We show in this article that doxorubicin-modified gold nanoparticles (Au NP-DOX) can be used for the post-amplification of the wavelength shift of localized surface plasmon resonance (LSPR) signals after DNA hybridization events. We take advantage of the intercalation properties of DOX with guanine-rich oligonucleotides and the plasmon coupling between surface-linked gold nanostructures and Au NP-DOX in solution to detect in a sensitive manner DNA hybridisation events. Post-treatment of double-stranded DNA with Au NP-DOX resulted in a detection limit of ≈600 pM, several times lower than that without post-incubation (LOD ≈ 40 nM).
Assuntos
Sondas de DNA/química , Doxorrubicina/química , Ouro/química , Limite de Detecção , Nanopartículas Metálicas/química , Ressonância de Plasmônio de Superfície/métodosRESUMO
Platelet extracellular vesicles (pEVs) isolated from clinical-grade human platelet concentrates are attracting attention as a promising agent for wound healing therapies. Although pEVs have shown potential for skin regeneration, their incorporation into wound bandages has remained limitedly explored. Herein, gelatine-based hydrogel (PAH-G) foams for pEVs loading and release are formulated by crosslinking gelatine with poly(allylamine) hydrochloride (PAH) in the presence of glutaraldehyde and sodium bicarbonate. The optimized PAH-G hydrogel foam, PAH0.24G37, displayed an elastic modulus G' = 8.5 kPa at 37 °C and retained a rubbery state at elevated temperatures. The excellent swelling properties of PAH0.24G37 allowed to easily absorb pEVs at high concentration (1 × 1011 particles mL-1). The therapeutic effect of pEVs was evaluated in vivo on a chronic wound rat model. These studies demonstrated full wound closure after 14 days upon treatment with PAH0.24G37@pEVs. The maintenance of a reduced-inflammatory environment from the onset of treatment promoted a quicker transition to skin remodeling. Promotion of follicle activation and angiogenesis as well as M1-M2 macrophage modulation are evidenced. Altogether, the multifunctional properties of PAH0.24G37@pEVs addressed the complex challenges associated with chronic diabetic wounds, representing a significant advance toward personalized treatment regimens for these conditions.
RESUMO
Deep eutectic solvents (DESs) have been intensively investigated in recent years for their antibacterial properties, with DESs that comprise organic acids (OA-DESs) showing promising antibacterial action. However a majority of the reports focused only on a limited number strains and techniques, which is not enough to determine the antibacterial potential of a substance. To bridge this gap, the antibacterial activity of classical DESs and OA-DESs is assessed on twelve Gram-negative and Gram-positive bacteria strains, with some of them exhibiting specific resistance toward antibiotics. The investigated formulations of OA-DESs comprise glycolic, malic, malonic, and oxalic acids as representatives of this group. Using a range of microbiological assays as well as physicochemical characterization methods, a major difference of the effectiveness between the two groups is demonstrated, with OA-DESs exhibiting, as expected, greater antibacterial effectiveness than classical DESs. Most interestingly, slight differences in the minimum inhibitory and bactericidal concentration values as well as time-kill kinetics profiles are observed between Gram-positive and Gram-negative strains. Transmission electron microscopy analysis reveals the effect of the treatment of the bacteria with the representatives of both groups of DESs, which allows us to better understand the possible mechanism-of-action of these novel materials.
Assuntos
Antibacterianos , Bactérias Gram-Negativas , Bactérias Gram-Positivas , Testes de Sensibilidade Microbiana , Antibacterianos/farmacologia , Antibacterianos/química , Bactérias Gram-Positivas/efeitos dos fármacos , Bactérias Gram-Negativas/efeitos dos fármacos , Solventes Eutéticos Profundos/química , Solventes/químicaRESUMO
TRPV6 calcium channel is a prospective target in prostate cancer (PCa) since it is not expressed in healthy prostate while its expression increases during cancer progression. Despite the role of TRPV6 in PCa cell survival and apoptotic resistance has been already established, no reliable tool to target TRPV6 channel in vivo and thus to reduce tumor burden is known to date. Here we report the generation of mouse monoclonal antibody mAb82 raised against extracellular epitope of the pore region of the channel. mAb82 inhibited TRPV6 currents by 90% at 24 µg/ml in a dose-dependent manner while decreasing store-operated calcium entry to 56% at only 2.4 µg/ml. mAb82 decreased PCa survival rate in vitro by 71% at 12 µg/ml via inducing cell death through the apoptosis cascade via activation of the protease calpain, following bax activation, mitochondria enlargement, and loss of cristae, Cyt C release, pro-caspase 9 cleavage with the subsequent activation of caspases 3/7. In vivo, mice bearing either PC3Mtrpv6+/+ or PC3Mtrpv6-/-+pTRPV6 tumors were successfully treated with mAb82 at the dose as low as 100 µg/kg resulting in a significant reduction tumor growth by 31% and 90%, respectively. The survival rate was markedly improved by 3.5 times in mice treated with mAb82 in PC3Mtrpv6+/+ tumor group and completely restored in PC3Mtrpv6-/-+pTRPV6 tumor group. mAb82 showed a TRPV6-expression dependent organ distribution and virtually no toxicity in the same way as mAbAU1, a control antibody of the same Ig2a isotype. Overall, our data demonstrate for the first time the use of an anti-TRPV6 monoclonal antibody in vitro and in vivo in the treatment of the TRPV6-expressing PCa tumors.
Assuntos
Anticorpos Monoclonais , Apoptose , Canais de Cálcio , Neoplasias da Próstata , Canais de Cátion TRPV , Masculino , Canais de Cátion TRPV/metabolismo , Neoplasias da Próstata/patologia , Neoplasias da Próstata/tratamento farmacológico , Neoplasias da Próstata/metabolismo , Apoptose/efeitos dos fármacos , Humanos , Animais , Anticorpos Monoclonais/farmacologia , Anticorpos Monoclonais/uso terapêutico , Camundongos , Canais de Cálcio/metabolismo , Linhagem Celular Tumoral , Ensaios Antitumorais Modelo de Xenoenxerto , Calpaína/metabolismo , Cálcio/metabolismoRESUMO
In this article, the detection of DNA hybridization taking advantage of the plasmonic properties of gold nanostructures is described. The approach is based on the amplification of the wavelength shift of a multilayered localized surface plasmon resonance (LSPR) sensor interface upon hybridization with gold nanorods and nanostars-labeled DNA. The amplification results in a significant decrease of the limit of detection from ≈40 nM as observed for unlabeled DNA to 0.2 nM for labeled DNA molecules. Furthermore, the plasmonic band, characteristic of the labeled DNA, is different from that of the LSPR interface. Indeed, next to the plasmon band at around 550 nm, being in resonance with the plasmon band of the LSPR interface, additional plasmonic peaks at 439 nm for gold nanostar-labeled DNA and 797 nm for gold nanorod-labeled DNA are observed, which were used as plasmonic signatures for successful hybridization.
Assuntos
Técnicas Biossensoriais/métodos , DNA/análise , Ouro/química , Nanopartículas Metálicas/química , Ressonância de Plasmônio de Superfície/métodos , Sondas de DNA/análise , Espectroscopia Fotoeletrônica/métodosRESUMO
The large-scale preparation of graphene is of great importance due to its potential applications in various fields. We report herein a simple method for the simultaneous exfoliation and reduction of graphene oxide (GO) to reduced GO (rGO) by using alkynyl-terminated dopamine as the reducing agent. The reaction was performed under mild conditions to yield rGO functionalized with the dopamine derivative. The chemical reactivity of the alkynyl function was demonstrated by post-functionalization with two thiolated precursors, namely 6-(ferrocenyl)hexanethiol and 1H,1H,2H,2H-perfluorodecanethiol. X-ray photoelectron spectroscopy, UV/Vis spectrophotometry, Raman spectroscopy, conductivity measurements, and cyclic voltammetry were used to characterize the resulting surfaces.