Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 155
Filtrar
Mais filtros

Tipo de documento
Intervalo de ano de publicação
1.
Cell ; 187(1): 17-43, 2024 01 04.
Artigo em Inglês | MEDLINE | ID: mdl-38181740

RESUMO

Although social interactions are known to drive pathogen transmission, the contributions of socially transmissible host-associated mutualists and commensals to host health and disease remain poorly explored. We use the concept of the social microbiome-the microbial metacommunity of a social network of hosts-to analyze the implications of social microbial transmission for host health and disease. We investigate the contributions of socially transmissible microbes to both eco-evolutionary microbiome community processes (colonization resistance, the evolution of virulence, and reactions to ecological disturbance) and microbial transmission-based processes (transmission of microbes with metabolic and immune effects, inter-specific transmission, transmission of antibiotic-resistant microbes, and transmission of viruses). We consider the implications of social microbial transmission for communicable and non-communicable diseases and evaluate the importance of a socially transmissible component underlying canonically non-communicable diseases. The social transmission of mutualists and commensals may play a significant, under-appreciated role in the social determinants of health and may act as a hidden force in social evolution.


Assuntos
Microbiota , Fatores Sociais , Simbiose , Animais , Humanos , Doenças não Transmissíveis , Virulência
2.
Cell ; 183(3): 752-770.e22, 2020 10 29.
Artigo em Inglês | MEDLINE | ID: mdl-33125891

RESUMO

A greater understanding of hematopoietic stem cell (HSC) regulation is required for dissecting protective versus detrimental immunity to pathogens that cause chronic infections such as Mycobacterium tuberculosis (Mtb). We have shown that systemic administration of Bacille Calmette-Guérin (BCG) or ß-glucan reprograms HSCs in the bone marrow (BM) via a type II interferon (IFN-II) or interleukin-1 (IL1) response, respectively, which confers protective trained immunity against Mtb. Here, we demonstrate that, unlike BCG or ß-glucan, Mtb reprograms HSCs via an IFN-I response that suppresses myelopoiesis and impairs development of protective trained immunity to Mtb. Mechanistically, IFN-I signaling dysregulates iron metabolism, depolarizes mitochondrial membrane potential, and induces cell death specifically in myeloid progenitors. Additionally, activation of the IFN-I/iron axis in HSCs impairs trained immunity to Mtb infection. These results identify an unanticipated immune evasion strategy of Mtb in the BM that controls the magnitude and intrinsic anti-microbial capacity of innate immunity to infection.


Assuntos
Células-Tronco Hematopoéticas/microbiologia , Imunidade , Mycobacterium tuberculosis/fisiologia , Mielopoese , Animais , Células da Medula Óssea/metabolismo , Proliferação de Células , Suscetibilidade a Doenças , Homeostase , Interferon Tipo I/metabolismo , Ferro/metabolismo , Cinética , Pulmão/microbiologia , Pulmão/patologia , Macrófagos/imunologia , Camundongos Endogâmicos C57BL , Células Mieloides/metabolismo , Necrose , Transdução de Sinais , Transcrição Gênica , Tuberculose/imunologia , Tuberculose/microbiologia , Tuberculose/patologia
3.
Cell ; 176(5): 967-981.e19, 2019 02 21.
Artigo em Inglês | MEDLINE | ID: mdl-30739797

RESUMO

Tissue-resident lymphocytes play a key role in immune surveillance, but it remains unclear how these inherently stable cell populations respond to chronic inflammation. In the setting of celiac disease (CeD), where exposure to dietary antigen can be controlled, gluten-induced inflammation triggered a profound depletion of naturally occurring Vγ4+/Vδ1+ intraepithelial lymphocytes (IELs) with innate cytolytic properties and specificity for the butyrophilin-like (BTNL) molecules BTNL3/BTNL8. Creation of a new niche with reduced expression of BTNL8 and loss of Vγ4+/Vδ1+ IELs was accompanied by the expansion of gluten-sensitive, interferon-γ-producing Vδ1+ IELs bearing T cell receptors (TCRs) with a shared non-germline-encoded motif that failed to recognize BTNL3/BTNL8. Exclusion of dietary gluten restored BTNL8 expression but was insufficient to reconstitute the physiological Vγ4+/Vδ1+ subset among TCRγδ+ IELs. Collectively, these data show that chronic inflammation permanently reconfigures the tissue-resident TCRγδ+ IEL compartment in CeD. VIDEO ABSTRACT.


Assuntos
Doença Celíaca/imunologia , Inflamação/imunologia , Receptores de Antígenos de Linfócitos T gama-delta/imunologia , Antígenos , Butirofilinas/metabolismo , Doença Celíaca/fisiopatologia , Doença Crônica , Dieta Livre de Glúten , Glutens/metabolismo , Células HEK293 , Humanos , Inflamação/metabolismo , Mucosa Intestinal/imunologia , Linfócitos Intraepiteliais/imunologia , Linfócitos Intraepiteliais/metabolismo , Receptores de Antígenos de Linfócitos T/imunologia , Receptores de Antígenos de Linfócitos T/metabolismo , Receptores de Antígenos de Linfócitos T gama-delta/metabolismo
4.
Annu Rev Immunol ; 29: 493-525, 2011.
Artigo em Inglês | MEDLINE | ID: mdl-21219178

RESUMO

Celiac disease (CD) is a gluten-sensitive enteropathy that develops in genetically susceptible individuals by exposure to cereal gluten proteins. This review integrates insights from immunological studies with results of recent genetic genome-wide association studies into a disease model. Genetic data, among others, suggest that viral infections are implicated and that natural killer effector pathways are important in the pathogenesis of CD, but most prominently these data converge with existing immunological findings that CD is primarily a T cell-mediated immune disorder in which CD4(+) T cells that recognize gluten peptides in the context of major histocompatibility class II molecules play a central role. Comparison of genetic pathways as well as genetic susceptibility loci between CD and other autoimmune and inflammatory disorders reveals that CD bears stronger resemblance to T cell-mediated organ-specific autoimmune than to inflammatory diseases. Finally, we present evidence suggesting that the high prevalence of CD in modern societies may be the by-product of past selection for increased immune responses to combat infections in populations in which agriculture and cereals were introduced early on in the post-Neolithic period.


Assuntos
Doença Celíaca/genética , Doença Celíaca/imunologia , Animais , Doença Celíaca/epidemiologia , Doença Celíaca/fisiopatologia , Predisposição Genética para Doença , Glutens/imunologia , Humanos , Fatores de Risco
5.
Cell ; 172(1-2): 176-190.e19, 2018 01 11.
Artigo em Inglês | MEDLINE | ID: mdl-29328912

RESUMO

The dogma that adaptive immunity is the only arm of the immune response with memory capacity has been recently challenged by several studies demonstrating evidence for memory-like innate immune training. However, the underlying mechanisms and location for generating such innate memory responses in vivo remain unknown. Here, we show that access of Bacillus Calmette-Guérin (BCG) to the bone marrow (BM) changes the transcriptional landscape of hematopoietic stem cells (HSCs) and multipotent progenitors (MPPs), leading to local cell expansion and enhanced myelopoiesis at the expense of lymphopoiesis. Importantly, BCG-educated HSCs generate epigenetically modified macrophages that provide significantly better protection against virulent M. tuberculosis infection than naïve macrophages. By using parabiotic and chimeric mice, as well as adoptive transfer approaches, we demonstrate that training of the monocyte/macrophage lineage via BCG-induced HSC reprogramming is sustainable in vivo. Our results indicate that targeting the HSC compartment provides a novel approach for vaccine development.


Assuntos
Células-Tronco Hematopoéticas/imunologia , Imunidade Inata , Memória Imunológica , Mycobacterium bovis/imunologia , Transcriptoma , Animais , Linhagem Celular , Células Cultivadas , Epigênese Genética , Hematopoese , Camundongos , Camundongos Endogâmicos C57BL , Tuberculose/imunologia
6.
Immunity ; 56(1): 43-57.e10, 2023 01 10.
Artigo em Inglês | MEDLINE | ID: mdl-36630917

RESUMO

There is growing recognition that regionalization of bacterial colonization and immunity along the intestinal tract has an important role in health and disease. Yet, the mechanisms underlying intestinal regionalization and its dysregulation in disease are not well understood. This study found that regional epithelial expression of the transcription factor GATA4 controls bacterial colonization and inflammatory tissue immunity in the proximal small intestine by regulating retinol metabolism and luminal IgA. Furthermore, in mice without jejunal GATA4 expression, the commensal segmented filamentous bacteria promoted pathogenic inflammatory immune responses that disrupted barrier function and increased mortality upon Citrobacter rodentium infection. In celiac disease patients, low GATA4 expression was associated with metabolic alterations, mucosal Actinobacillus, and increased IL-17 immunity. Taken together, these results reveal broad impacts of GATA4-regulated intestinal regionalization on bacterial colonization and tissue immunity, highlighting an elaborate interdependence of intestinal metabolism, immunity, and microbiota in homeostasis and disease.


Assuntos
Infecções por Enterobacteriaceae , Fator de Transcrição GATA4 , Microbioma Gastrointestinal , Mucosa Intestinal , Animais , Humanos , Camundongos , Actinobacillus , Microbioma Gastrointestinal/imunologia , Fator de Transcrição GATA4/metabolismo , Imunidade nas Mucosas , Interleucina-17/imunologia , Interleucina-17/metabolismo , Mucosa Intestinal/imunologia , Mucosa Intestinal/microbiologia , Intestino Delgado , Simbiose
7.
Cell ; 167(3): 657-669.e21, 2016 Oct 20.
Artigo em Inglês | MEDLINE | ID: mdl-27768889

RESUMO

Individuals from different populations vary considerably in their susceptibility to immune-related diseases. To understand how genetic variation and natural selection contribute to these differences, we tested for the effects of African versus European ancestry on the transcriptional response of primary macrophages to live bacterial pathogens. A total of 9.3% of macrophage-expressed genes show ancestry-associated differences in the gene regulatory response to infection, and African ancestry specifically predicts a stronger inflammatory response and reduced intracellular bacterial growth. A large proportion of these differences are under genetic control: for 804 genes, more than 75% of ancestry effects on the immune response can be explained by a single cis- or trans-acting expression quantitative trait locus (eQTL). Finally, we show that genetic effects on the immune response are strongly enriched for recent, population-specific signatures of adaptation. Together, our results demonstrate how historical selective events continue to shape human phenotypic diversity today, including for traits that are key to controlling infection.

8.
Cell ; 160(1-2): 20-35, 2015 Jan 15.
Artigo em Inglês | MEDLINE | ID: mdl-25533784

RESUMO

Zoonotic viruses, such as HIV, Ebola virus, coronaviruses, influenza A viruses, hantaviruses, or henipaviruses, can result in profound pathology in humans. In contrast, populations of the reservoir hosts of zoonotic pathogens often appear to tolerate these infections with little evidence of disease. Why are viruses more dangerous in one species than another? Immunological studies investigating quantitative and qualitative differences in the host-virus equilibrium in animal reservoirs will be key to answering this question, informing new approaches for treating and preventing zoonotic diseases. Integrating an understanding of host immune responses with epidemiological, ecological, and evolutionary insights into viral emergence will shed light on mechanisms that minimize fitness costs associated with viral infection, facilitate transmission to other hosts, and underlie the association of specific reservoir hosts with multiple emerging viruses. Reservoir host studies provide a rich opportunity for elucidating fundamental immunological processes and their underlying genetic basis, in the context of distinct physiological and metabolic constraints that contribute to host resistance and disease tolerance.


Assuntos
Fenômenos Fisiológicos Virais , Zoonoses/virologia , Animais , Doenças Transmissíveis Emergentes/imunologia , Doenças Transmissíveis Emergentes/transmissão , Doenças Transmissíveis Emergentes/virologia , Reservatórios de Doenças , Interações Hospedeiro-Patógeno , Humanos , Viroses , Zoonoses/imunologia , Zoonoses/transmissão
10.
Immunity ; 52(5): 737-741, 2020 05 19.
Artigo em Inglês | MEDLINE | ID: mdl-32433946

RESUMO

The emergence of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) and its associated disease, COVID-19, has demonstrated the devastating impact of a novel, infectious pathogen on a susceptible population. Here, we explain the basic concepts of herd immunity and discuss its implications in the context of COVID-19.


Assuntos
Infecções por Coronavirus/imunologia , Imunidade Coletiva , Modelos Imunológicos , Pneumonia Viral/imunologia , Número Básico de Reprodução , Betacoronavirus/imunologia , COVID-19 , Infecções por Coronavirus/epidemiologia , Infecções por Coronavirus/transmissão , Saúde Global , Humanos , Pandemias , Pneumonia Viral/epidemiologia , Pneumonia Viral/transmissão , SARS-CoV-2 , Vacinação , Cobertura Vacinal
11.
Nature ; 614(7948): 530-538, 2023 02.
Artigo em Inglês | MEDLINE | ID: mdl-36599368

RESUMO

Resident-tissue macrophages (RTMs) arise from embryonic precursors1,2, yet the developmental signals that shape their longevity remain largely unknown. Here we demonstrate in mice genetically deficient in 12-lipoxygenase and 15-lipoxygenase (Alox15-/- mice) that neonatal neutrophil-derived 12-HETE is required for self-renewal and maintenance of alveolar macrophages (AMs) during lung development. Although the seeding and differentiation of AM progenitors remained intact, the absence of 12-HETE led to a significant reduction in AMs in adult lungs and enhanced senescence owing to increased prostaglandin E2 production. A compromised AM compartment resulted in increased susceptibility to acute lung injury induced by lipopolysaccharide and to pulmonary infections with influenza A virus or SARS-CoV-2. Our results highlight the complexity of prenatal RTM programming and reveal their dependency on in trans eicosanoid production by neutrophils for lifelong self-renewal.


Assuntos
Ácido 12-Hidroxi-5,8,10,14-Eicosatetraenoico , Autorrenovação Celular , Macrófagos Alveolares , Neutrófilos , Animais , Camundongos , Ácido 12-Hidroxi-5,8,10,14-Eicosatetraenoico/metabolismo , Lesão Pulmonar Aguda , Animais Recém-Nascidos , Araquidonato 12-Lipoxigenase/deficiência , Araquidonato 15-Lipoxigenase/deficiência , COVID-19 , Vírus da Influenza A , Lipopolissacarídeos , Pulmão/citologia , Pulmão/virologia , Macrófagos Alveolares/citologia , Macrófagos Alveolares/metabolismo , Neutrófilos/metabolismo , Infecções por Orthomyxoviridae , Prostaglandinas E , SARS-CoV-2 , Suscetibilidade a Doenças
14.
Nature ; 611(7935): 312-319, 2022 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-36261521

RESUMO

Infectious diseases are among the strongest selective pressures driving human evolution1,2. This includes the single greatest mortality event in recorded history, the first outbreak of the second pandemic of plague, commonly called the Black Death, which was caused by the bacterium Yersinia pestis3. This pandemic devastated Afro-Eurasia, killing up to 30-50% of the population4. To identify loci that may have been under selection during the Black Death, we characterized genetic variation around immune-related genes from 206 ancient DNA extracts, stemming from two different European populations before, during and after the Black Death. Immune loci are strongly enriched for highly differentiated sites relative to a set of non-immune loci, suggesting positive selection. We identify 245 variants that are highly differentiated within the London dataset, four of which were replicated in an independent cohort from Denmark, and represent the strongest candidates for positive selection. The selected allele for one of these variants, rs2549794, is associated with the production of a full-length (versus truncated) ERAP2 transcript, variation in cytokine response to Y. pestis and increased ability to control intracellular Y. pestis in macrophages. Finally, we show that protective variants overlap with alleles that are today associated with increased susceptibility to autoimmune diseases, providing empirical evidence for the role played by past pandemics in shaping present-day susceptibility to disease.


Assuntos
DNA Antigo , Predisposição Genética para Doença , Imunidade , Peste , Seleção Genética , Yersinia pestis , Humanos , Aminopeptidases/genética , Aminopeptidases/imunologia , Peste/genética , Peste/imunologia , Peste/microbiologia , Peste/mortalidade , Yersinia pestis/imunologia , Yersinia pestis/patogenicidade , Seleção Genética/imunologia , Europa (Continente)/epidemiologia , Europa (Continente)/etnologia , Imunidade/genética , Conjuntos de Dados como Assunto , Londres/epidemiologia , Dinamarca/epidemiologia
15.
Immunol Rev ; 323(1): 227-240, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38577999

RESUMO

Humans exhibit considerable variability in their immune responses to the same immune challenges. Such variation is widespread and affects individual and population-level susceptibility to infectious diseases and immune disorders. Although the factors influencing immune response diversity are partially understood, what mechanisms lead to the wide range of immune traits in healthy individuals remain largely unexplained. Here, we discuss the role that natural selection has played in driving phenotypic differences in immune responses across populations and present-day susceptibility to immune-related disorders. Further, we touch on future directions in the field of immunogenomics, highlighting the value of expanding this work to human populations globally, the utility of modeling the immune response as a dynamic process, and the importance of considering the potential polygenic nature of natural selection. Identifying loci acted upon by evolution may further pinpoint variants critically involved in disease etiology, and designing studies to capture these effects will enrich our understanding of the genetic contributions to immunity and immune dysregulation.


Assuntos
Seleção Genética , Humanos , Animais , Predisposição Genética para Doença , Imunidade/genética , Variação Genética , Genética Populacional , Fenótipo , Suscetibilidade a Doenças/imunologia
16.
Immunity ; 48(6): 1074-1076, 2018 06 19.
Artigo em Inglês | MEDLINE | ID: mdl-29924972

RESUMO

Bats are reservoir hosts of numerous viruses that cause severe pathology in humans. How bats cope with such pathogens remains elusive. In a recent issue of Cell, Pavlovich et al. (2018) describe several key adaptations in innate immune-related genes that suggest that the Egyptian rousette fruit bat relies on immune tolerance mechanisms to manage viral infections.


Assuntos
Antivirais , Quirópteros , Animais , Egito , Humanos , Tolerância Imunológica , Imunidade
17.
PLoS Biol ; 22(4): e3002259, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38683873

RESUMO

Antituberculosis drugs, mostly developed over 60 years ago, combined with a poorly effective vaccine, have failed to eradicate tuberculosis. More worryingly, multiresistant strains of Mycobacterium tuberculosis (MTB) are constantly emerging. Innovative strategies are thus urgently needed to improve tuberculosis treatment. Recently, host-directed therapy has emerged as a promising strategy to be used in adjunct with existing or future antibiotics, by improving innate immunity or limiting immunopathology. Here, using high-content imaging, we identified novel 1,2,4-oxadiazole-based compounds, which allow human macrophages to control MTB replication. Genome-wide gene expression analysis revealed that these molecules induced zinc remobilization inside cells, resulting in bacterial zinc intoxication. More importantly, we also demonstrated that, upon treatment with these novel compounds, MTB became even more sensitive to antituberculosis drugs, in vitro and in vivo, in a mouse model of tuberculosis. Manipulation of heavy metal homeostasis holds thus great promise to be exploited to develop host-directed therapeutic interventions.


Assuntos
Antituberculosos , Modelos Animais de Doenças , Macrófagos , Mycobacterium tuberculosis , Oxidiazóis , Tuberculose , Zinco , Animais , Oxidiazóis/farmacologia , Humanos , Antituberculosos/farmacologia , Antituberculosos/uso terapêutico , Mycobacterium tuberculosis/efeitos dos fármacos , Zinco/metabolismo , Macrófagos/efeitos dos fármacos , Macrófagos/metabolismo , Camundongos , Tuberculose/tratamento farmacológico , Camundongos Endogâmicos C57BL , Feminino , Sinergismo Farmacológico
18.
Nature ; 595(7868): 501-510, 2021 07.
Artigo em Inglês | MEDLINE | ID: mdl-34290426

RESUMO

The unconventional T cell compartment encompasses a variety of cell subsets that straddle the line between innate and adaptive immunity, often reside at mucosal surfaces and can recognize a wide range of non-polymorphic ligands. Recent advances have highlighted the role of unconventional T cells in tissue homeostasis and disease. In this Review, we recast unconventional T cell subsets according to the class of ligand that they recognize; their expression of semi-invariant or diverse T cell receptors; the structural features that underlie ligand recognition; their acquisition of effector functions in the thymus or periphery; and their distinct functional properties. Unconventional T cells follow specific selection rules and are poised to recognize self or evolutionarily conserved microbial antigens. We discuss these features from an evolutionary perspective to provide insights into the development and function of unconventional T cells. Finally, we elaborate on the functional redundancy of unconventional T cells and their relationship to subsets of innate and adaptive lymphoid cells, and propose that the unconventional T cell compartment has a critical role in our survival by expanding and complementing the role of the conventional T cell compartment in protective immunity, tissue healing and barrier function.


Assuntos
Subpopulações de Linfócitos T/imunologia , Imunidade Adaptativa , Animais , Evolução Biológica , Humanos , Imunidade Inata , Ligantes , Receptores de Antígenos de Linfócitos T
19.
Proc Natl Acad Sci U S A ; 121(29): e2400413121, 2024 Jul 16.
Artigo em Inglês | MEDLINE | ID: mdl-38976741

RESUMO

Trained immunity is characterized by epigenetic and metabolic reprogramming in response to specific stimuli. This rewiring can result in increased cytokine and effector responses to pathogenic challenges, providing nonspecific protection against disease. It may also improve immune responses to established immunotherapeutics and vaccines. Despite its promise for next-generation therapeutic design, most current understanding and experimentation is conducted with complex and heterogeneous biologically derived molecules, such as ß-glucan or the Bacillus Calmette-Guérin (BCG) vaccine. This limited collection of training compounds also limits the study of the genes most involved in training responses as each molecule has both training and nontraining effects. Small molecules with tunable pharmacokinetics and delivery modalities would both assist in the study of trained immunity and its future applications. To identify small molecule inducers of trained immunity, we screened a library of 2,000 drugs and drug-like compounds. Identification of well-defined compounds can improve our understanding of innate immune memory and broaden the scope of its clinical applications. We identified over two dozen small molecules in several chemical classes that induce a training phenotype in the absence of initial immune activation-a current limitation of reported inducers of training. A surprising result was the identification of glucocorticoids, traditionally considered immunosuppressive, providing an unprecedented link between glucocorticoids and trained innate immunity. We chose seven of these top candidates to characterize and establish training activity in vivo. In this work, we expand the number of compounds known to induce trained immunity, creating alternative avenues for studying and applying innate immune training.


Assuntos
Ensaios de Triagem em Larga Escala , Imunidade Inata , Bibliotecas de Moléculas Pequenas , Animais , Camundongos , Ensaios de Triagem em Larga Escala/métodos , Imunidade Inata/efeitos dos fármacos , Bibliotecas de Moléculas Pequenas/farmacologia , Camundongos Endogâmicos C57BL , Memória Imunológica/efeitos dos fármacos , Imunidade Treinada
20.
Nature ; 578(7796): 600-604, 2020 02.
Artigo em Inglês | MEDLINE | ID: mdl-32051586

RESUMO

Coeliac disease is a complex, polygenic inflammatory enteropathy caused by exposure to dietary gluten that occurs in a subset of genetically susceptible individuals who express either the HLA-DQ8 or HLA-DQ2 haplotypes1,2. The need to develop non-dietary treatments is now widely recognized3, but no pathophysiologically relevant gluten- and HLA-dependent preclinical model exists. Furthermore, although studies in humans have led to major advances in our understanding of the pathogenesis of coeliac disease4, the respective roles of disease-predisposing HLA molecules, and of adaptive and innate immunity in the development of tissue damage, have not been directly demonstrated. Here we describe a mouse model that reproduces the overexpression of interleukin-15 (IL-15) in the gut epithelium and lamina propria that is characteristic of active coeliac disease, expresses the predisposing HLA-DQ8 molecule, and develops villous atrophy after ingestion of gluten. Overexpression of IL-15 in both the epithelium and the lamina propria is required for the development of villous atrophy, which demonstrates the location-dependent central role of IL-15 in the pathogenesis of coeliac disease. In addition, CD4+ T cells and HLA-DQ8 have a crucial role in the licensing of cytotoxic T cells to mediate intestinal epithelial cell lysis. We also demonstrate a role for the cytokine interferon-γ (IFNγ) and the enzyme transglutaminase 2 (TG2) in tissue destruction. By reflecting the complex interaction between gluten, genetics and IL-15-driven tissue inflammation, this mouse model provides the opportunity to both increase our understanding of coeliac disease, and develop new therapeutic strategies.


Assuntos
Doença Celíaca/imunologia , Doença Celíaca/patologia , Glutens/imunologia , Antígenos HLA-DQ/imunologia , Interleucina-15/imunologia , Animais , Linfócitos T CD4-Positivos/imunologia , Feminino , Antígenos HLA-DQ/genética , Humanos , Interferon gama/imunologia , Interleucina-15/genética , Masculino , Camundongos , Camundongos Transgênicos , Proteínas dos Microfilamentos/genética , Proteínas dos Microfilamentos/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA