RESUMO
Fish show rapid movements in various behavioral activities or associated with the presence of food. However, in periods of rapid movement, the rate at which occlusion occurs among the fish is quite high, causing inconsistency in the detection and tracking of fish, hindering the fish's identity and behavioral trajectory over a long period of time. Although some algorithms have been proposed to solve these problems, most of their applications were made in groups of fish that swim in shallow water and calm behavior, with few sudden movements. To solve these problems, a convolutional network of object recognition, YOLOv2, was used to delimit the region of the fish heads to optimize individual fish detection. In the tracking phase, the Kalman filter was used to estimate the best state of the fish's head position in each frame and, subsequently, the trajectories of each fish were connected among the frames. The results of the algorithm show adequate performances in the trajectories of groups of zebrafish that exhibited rapid movements.
Assuntos
Peixe-Zebra/fisiologia , Algoritmos , Animais , Feminino , Processamento de Imagem Assistida por Computador , Masculino , Movimento , Natação , Gravação em VídeoRESUMO
Studies using zebrafish (Danio rerio) in neuro-behavioural research are growing. Measuring fish behavior by computational methods is one of the most efficient ways to avoid human bias in experimental analyses, extending them to various approaches. Sometimes, thorough analyses are difficult to do, as fish can behave unpredictably during an experimental strategy. However, the analyses can be implemented in an automated way, using an online strategy and video processing for a complete assessment of the zebrafish behavior, based on the detection and tracking of fish during an activity. Here, a fully automatic conditioning and detailed analysis of zebrafish behavior is presented. Microcontrolled components were used to control the delivery of visual and sound stimuli, in addition to the concise amounts of food after conditioned stimuli for adult zebrafish groups in a conventional tank. The images were captured and processed for automatic detection of the fish, and the training of the fish was done in two evaluation strategies: simple and complex. In simple conditioning, the zebrafish showed significant responses from the second attempt, learning that the conditioned stimulus was a predictor of food presentation in a specific space of the tank, where the food was dumped. When the fish were subjected to two stimuli for decision-making in the food reward, the zebrafish obtained better responses to red light stimuli in relation to vibration. The behavior change was clear in stimulated fish in relation to the control group, thus, the distances traveled and the speed were greater, while the polarization was lower in stimulated fish. This automated system allows for the conditioning and assessment of zebrafish behavior online, with greater stability in experiments, and in the analysis of the behavior of individual fish or fish schools, including learning and memory studies.