Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Mais filtros

Base de dados
Tipo de documento
País de afiliação
Intervalo de ano de publicação
2.
Artigo em Inglês | MEDLINE | ID: mdl-38869781

RESUMO

PURPOSE: Our aim was to evaluate if maternal age at transfer following autologous oocyte cryopreservation is associated with live birth rate (LBR). METHODS: We performed a retrospective cohort study of all patients who thawed autologous oocytes and then underwent a single frozen euploid embryo transfer between 2011 and 2021 at a large urban university-affiliated fertility center. Each oocyte thaw patient was matched 2:1 to in vitro fertilization (IVF) patients who underwent single embryo transfer < 1 year after retrieval. Primary outcome was LBR. Secondary outcomes included implantation rates (IR) and spontaneous abortion rates (SABR). RESULTS: A total of 169 oocyte thaw patients were matched to 338 IVF patients. As expected, oocyte thaw patients were older (median age 42.5 vs. 37.6 years, p < 0.001) and waited longer between retrieval and transfer than in vitro fertilization patients (median time 59 vs. 1 month, p < 0.001). In univariate analysis, implantation and LBR differed among oocyte thaw and IVF patients (p < 0.05), but SABR did not (p = 0.57). Transfer outcomes in oocyte thaw patients did not differ based on transfer age group (IR: p = 0.18; SABR: p = 0.12; LBR: p = 0.24). In a multiple logistic regression model, age at transfer was not predictive of live birth when controlling for age at retrieval, embryo morphology, and day of blastulation. CONCLUSIONS: Maternal age at transfer after oocyte cryopreservation is not predictive of LBR; this suggests that "an aging womb" does not impair LBR after oocyte thaw and empowers patients to return for transfer when ready for childbearing.

3.
Nature ; 523(7561): 468-71, 2015 Jul 23.
Artigo em Inglês | MEDLINE | ID: mdl-26201599

RESUMO

Haematopoietic stem and progenitor cell (HSPC) transplant is a widely used treatment for life-threatening conditions such as leukaemia; however, the molecular mechanisms regulating HSPC engraftment of the recipient niche remain incompletely understood. Here we develop a competitive HSPC transplant method in adult zebrafish, using in vivo imaging as a non-invasive readout. We use this system to conduct a chemical screen, and identify epoxyeicosatrienoic acids (EETs) as a family of lipids that enhance HSPC engraftment. The pro-haematopoietic effects of EETs were conserved in the developing zebrafish embryo, where 11,12-EET promoted HSPC specification by activating a unique activator protein 1 (AP-1) and runx1 transcription program autonomous to the haemogenic endothelium. This effect required the activation of the phosphatidylinositol-3-OH kinase (PI(3)K) pathway, specifically PI(3)Kγ. In adult HSPCs, 11,12-EET induced transcriptional programs, including AP-1 activation, which modulate several cellular processes, such as migration, to promote engraftment. Furthermore, we demonstrate that the EET effects on enhancing HSPC homing and engraftment are conserved in mammals. Our study establishes a new method to explore the molecular mechanisms of HSPC engraftment, and discovers a previously unrecognized, evolutionarily conserved pathway regulating multiple haematopoietic generation and regeneration processes. EETs may have clinical application in marrow or cord blood transplantation.


Assuntos
Ácido 8,11,14-Eicosatrienoico/análogos & derivados , Hematopoese , Transplante de Células-Tronco Hematopoéticas , Células-Tronco Hematopoéticas/citologia , Peixe-Zebra/embriologia , Ácido 8,11,14-Eicosatrienoico/metabolismo , Animais , Linhagem Celular , Movimento Celular , Subunidade alfa 2 de Fator de Ligação ao Core/metabolismo , Feminino , Regulação da Expressão Gênica , Células Endoteliais da Veia Umbilical Humana , Humanos , Rim/citologia , Masculino , Camundongos , Fosfatidilinositol 3-Quinases , Fator de Transcrição AP-1/metabolismo , Transcrição Gênica
4.
Nature ; 476(7360): 346-50, 2011 Aug 18.
Artigo em Inglês | MEDLINE | ID: mdl-21760589

RESUMO

Cancer cells adapt their metabolic processes to drive macromolecular biosynthesis for rapid cell growth and proliferation. RNA interference (RNAi)-based loss-of-function screening has proven powerful for the identification of new and interesting cancer targets, and recent studies have used this technology in vivo to identify novel tumour suppressor genes. Here we developed a method for identifying novel cancer targets via negative-selection RNAi screening using a human breast cancer xenograft model at an orthotopic site in the mouse. Using this method, we screened a set of metabolic genes associated with aggressive breast cancer and stemness to identify those required for in vivo tumorigenesis. Among the genes identified, phosphoglycerate dehydrogenase (PHGDH) is in a genomic region of recurrent copy number gain in breast cancer and PHGDH protein levels are elevated in 70% of oestrogen receptor (ER)-negative breast cancers. PHGDH catalyses the first step in the serine biosynthesis pathway, and breast cancer cells with high PHGDH expression have increased serine synthesis flux. Suppression of PHGDH in cell lines with elevated PHGDH expression, but not in those without, causes a strong decrease in cell proliferation and a reduction in serine synthesis. We find that PHGDH suppression does not affect intracellular serine levels, but causes a drop in the levels of α-ketoglutarate, another output of the pathway and a tricarboxylic acid (TCA) cycle intermediate. In cells with high PHGDH expression, the serine synthesis pathway contributes approximately 50% of the total anaplerotic flux of glutamine into the TCA cycle. These results reveal that certain breast cancers are dependent upon increased serine pathway flux caused by PHGDH overexpression and demonstrate the utility of in vivo negative-selection RNAi screens for finding potential anticancer targets.


Assuntos
Neoplasias da Mama/genética , Neoplasias da Mama/metabolismo , Genômica , Serina/biossíntese , Animais , Biomarcadores Tumorais/metabolismo , Neoplasias da Mama/enzimologia , Neoplasias da Mama/patologia , Linhagem Celular Tumoral , Proliferação de Células , Ciclo do Ácido Cítrico/fisiologia , Regulação Enzimológica da Expressão Gênica , Regulação Neoplásica da Expressão Gênica , Ácido Glutâmico/metabolismo , Humanos , Ácidos Cetoglutáricos/metabolismo , Melanoma/enzimologia , Melanoma/genética , Camundongos , Transplante de Neoplasias , Fosfoglicerato Desidrogenase/genética , Fosfoglicerato Desidrogenase/metabolismo , Interferência de RNA
5.
Blood Adv ; 2(23): 3418-3427, 2018 12 11.
Artigo em Inglês | MEDLINE | ID: mdl-30504234

RESUMO

The NFE2 transcription factor is expressed in multiple hematopoietic lineages with a well-defined role in regulating megakaryocyte biogenesis and platelet production in mammals. Mice deficient in NFE2 develop severe thrombocytopenia with lethality resulting from neonatal hemorrhage. Recent data in mammals reveal potential differences in embryonic and adult thrombopoiesis. Multiple studies in zebrafish have revealed mechanistic insights into hematopoiesis, although thrombopoiesis has been less studied. Rather than platelets, zebrafish possess thrombocytes, which are nucleated cells with similar functional properties. Using transcription activator-like effector nucleases to generate mutations in nfe2, we show that unlike mammals, zebrafish survive to adulthood in the absence of Nfe2. Despite developing severe thrombocytopenia, homozygous mutants do not display overt hemorrhage or reduced survival. Surprisingly, quantification of circulating thrombocytes in mutant 6-day-old larvae revealed no significant differences from wild-type siblings. Both wild-type and nfe2 null larvae formed thrombocyte-rich clots in response to endothelial injury. In addition, ex vivo thrombocytic colony formation was intact in nfe2 mutants, and adult kidney marrow displayed expansion of hematopoietic progenitors. These data suggest that loss of Nfe2 results in a late block in adult thrombopoiesis, with secondary expansion of precursors: features consistent with mammals. Overall, our data suggest parallels with erythropoiesis, including distinct primitive and definitive pathways of development and potential for a previously unknown Nfe2-independent pathway of embryonic thrombopoiesis. Long-term homozygous mutant survival will facilitate in-depth study of Nfe2 deficiency in vivo, and further investigation could lead to alternative methodologies for the enhancement of platelet production.


Assuntos
Plaquetas/metabolismo , Fator de Transcrição NF-E2/metabolismo , Proteínas de Peixe-Zebra/metabolismo , Peixe-Zebra/crescimento & desenvolvimento , Sequência de Aminoácidos , Animais , Plaquetas/citologia , Códon de Terminação , Fibrinogênio/metabolismo , Mutação da Fase de Leitura , Edição de Genes , Humanos , Larva/metabolismo , Fator de Transcrição NF-E2/química , Fator de Transcrição NF-E2/genética , Alinhamento de Sequência , Trombopoese , Proteínas de Peixe-Zebra/química , Proteínas de Peixe-Zebra/genética
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA