Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 13 de 13
Filtrar
1.
Neurobiol Dis ; 194: 106470, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38485094

RESUMO

Pathogenic variants in KCNB1 are associated with a neurodevelopmental disorder spectrum that includes global developmental delays, cognitive impairment, abnormal electroencephalogram (EEG) patterns, and epilepsy with variable age of onset and severity. Additionally, there are prominent behavioral disturbances, including hyperactivity, aggression, and features of autism spectrum disorder. The most frequently identified recurrent variant is KCNB1-p.R306C, a missense variant located within the S4 voltage-sensing transmembrane domain. Individuals with the R306C variant exhibit mild to severe developmental delays, behavioral disorders, and a diverse spectrum of seizures. Previous in vitro characterization of R306C described altered sensitivity and cooperativity of the voltage sensor and impaired capacity for repetitive firing of neurons. Existing Kcnb1 mouse models include dominant negative missense variants, as well as knockout and frameshifts alleles. While all models recapitulate key features of KCNB1 encephalopathy, mice with dominant negative alleles were more severely affected. In contrast to existing loss-of-function and dominant-negative variants, KCNB1-p.R306C does not affect channel expression, but rather affects voltage-sensing. Thus, modeling R306C in mice provides a novel opportunity to explore impacts of a voltage-sensing mutation in Kcnb1. Using CRISPR/Cas9 genome editing, we generated the Kcnb1R306C mouse model and characterized the molecular and phenotypic effects. Consistent with the in vitro studies, neurons from Kcnb1R306C mice showed altered excitability. Heterozygous and homozygous R306C mice exhibited hyperactivity, altered susceptibility to chemoconvulsant-induced seizures, and frequent, long runs of slow spike wave discharges on EEG, reminiscent of the slow spike and wave activity characteristic of Lennox Gastaut syndrome. This novel model of channel dysfunction in Kcnb1 provides an additional, valuable tool to study KCNB1 encephalopathies. Furthermore, this allelic series of Kcnb1 mouse models will provide a unique platform to evaluate targeted therapies.


Assuntos
Transtorno do Espectro Autista , Encefalopatias , Epilepsia , Animais , Camundongos , Transtorno do Espectro Autista/patologia , Encefalopatias/patologia , Epilepsia/patologia , Mutação , Fenótipo , Convulsões
2.
Mamm Genome ; 32(5): 350-363, 2021 10.
Artigo em Inglês | MEDLINE | ID: mdl-34086081

RESUMO

Pathogenic variants in epilepsy genes result in a spectrum of clinical severity. One source of phenotypic heterogeneity is modifier genes that affect expressivity of a primary pathogenic variant. Mouse epilepsy models also display varying degrees of clinical severity on different genetic backgrounds. Mice with heterozygous deletion of Scn1a (Scn1a+/-) model Dravet syndrome, a severe epilepsy most often caused by SCN1A haploinsufficiency. Scn1a+/- mice recapitulate features of Dravet syndrome, including spontaneous seizures, sudden death, and cognitive/behavioral deficits. Scn1a+/- mice maintained on the 129S6/SvEvTac (129) strain have normal lifespan and no spontaneous seizures. In contrast, admixture with C57BL/6J (B6) results in epilepsy and premature lethality. We previously mapped Dravet Survival Modifier loci (Dsm1-Dsm5) responsible for strain-dependent differences in survival. Gabra2, encoding the GABAA α2 subunit, was nominated as a candidate modifier at Dsm1. Direct measurement of GABAA receptors found lower abundance of α2-containing receptors in hippocampal synapses of B6 mice relative to 129. We also identified a B6-specific single nucleotide deletion within Gabra2 that lowers mRNA and protein by nearly 50%. Repair of this deletion reestablished normal levels of Gabra2 expression. In this study, we used B6 mice with a repaired Gabra2 allele to evaluate Gabra2 as a genetic modifier of severity in Scn1a+/- mice. Gabra2 repair restored transcript and protein expression, increased abundance of α2-containing GABAA receptors in hippocampal synapses, and rescued epilepsy phenotypes of Scn1a+/- mice. These findings validate Gabra2 as a genetic modifier of Dravet syndrome, and support enhancing function of α2-containing GABAA receptors as treatment strategy for Dravet syndrome.


Assuntos
Epilepsias Mioclônicas/genética , Receptores de GABA-A/genética , Animais , Epilepsias Mioclônicas/fisiopatologia , Camundongos , Polimorfismo de Nucleotídeo Único
3.
Epilepsia ; 62(11): 2845-2857, 2021 11.
Artigo em Inglês | MEDLINE | ID: mdl-34510432

RESUMO

OBJECTIVE: Dravet syndrome is a severe developmental and epileptic encephalopathy (DEE) most often caused by de novo pathogenic variants in SCN1A. Individuals with Dravet syndrome rarely achieve seizure control and have significantly elevated risk for sudden unexplained death in epilepsy (SUDEP). Heterozygous deletion of Scn1a in mice (Scn1a+/- ) recapitulates several core phenotypes, including temperature-dependent and spontaneous seizures, SUDEP, and behavioral abnormalities. Furthermore, Scn1a+/- mice exhibit a similar clinical response to standard anticonvulsants. Cholesterol 24-hydroxlase (CH24H) is a brain-specific enzyme responsible for cholesterol catabolism. Recent research has indicated the therapeutic potential of CH24H inhibition for diseases associated with neural excitation, including seizures. METHODS: In this study, the novel compound soticlestat, a CH24H inhibitor, was administered to Scn1a+/- mice to investigate its ability to improve Dravet-like phenotypes in this preclinical model. RESULTS: Soticlestat treatment reduced seizure burden, protected against hyperthermia-induced seizures, and completely prevented SUDEP in Scn1a+/- mice. Video-electroencephalography (EEG) analysis confirmed the ability of soticlestat to reduce occurrence of electroclinical seizures. SIGNIFICANCE: This study demonstrates that soticlestat-mediated inhibition of CH24H provides therapeutic benefit for the treatment of Dravet syndrome in mice and has the potential for treatment of DEEs.


Assuntos
Epilepsias Mioclônicas , Epilepsia , Piperidinas , Piridinas , Convulsões Febris , Morte Súbita Inesperada na Epilepsia , Animais , Colesterol 24-Hidroxilase/antagonistas & inibidores , Epilepsias Mioclônicas/complicações , Epilepsias Mioclônicas/tratamento farmacológico , Epilepsias Mioclônicas/genética , Epilepsia/genética , Síndromes Epilépticas , Camundongos , Mortalidade Prematura , Mutação , Canal de Sódio Disparado por Voltagem NAV1.1/genética , Piperidinas/farmacologia , Piridinas/farmacologia , Convulsões/etiologia , Convulsões/genética , Convulsões Febris/tratamento farmacológico , Morte Súbita Inesperada na Epilepsia/etiologia
4.
Am J Respir Cell Mol Biol ; 62(6): 793-804, 2020 06.
Artigo em Inglês | MEDLINE | ID: mdl-32078336

RESUMO

Patients with lymphangioleiomyomatosis (LAM) develop pulmonary cysts associated with neoplastic, smooth muscle-like cells that feature neuroendocrine cell markers. The disease preferentially affects premenopausal women. Existing therapeutics do not cure LAM. As gp100 is a diagnostic marker expressed by LAM lesions, we proposed to target this immunogenic glycoprotein using TCR transgenic T cells. To reproduce the genetic mutations underlying LAM, we cultured Tsc2-/- kidney tumor cells from aged Tsc2 heterozygous mice and generated a stable gp100-expressing cell line by lentiviral transduction. T cells were isolated from major histocompatibility complex-matched TCR transgenic pmel-1 mice to measure cytotoxicity in vitro, and 80% cytotoxicity was observed within 48 hours. Antigen-specific cytotoxicity was likewise observed using pmel-1 TCR-transduced mouse T cells, suggesting that transgenic T cells may likewise be useful to treat LAM in vivo. On intravenous injection, slow-growing gp100+ LAM-like cells formed lung nodules that were readily detectable in severe combined immunodeficient/beige mice. Adoptive transfer of gp100-reactive but not wild-type T cells into mice significantly shrunk established lung tumors, even in the absence of anti-PD-1 therapy. These results demonstrate the treatment potential of adoptively transferred T cells to eliminate pulmonary lesions in LAM.


Assuntos
Imunoterapia Adotiva , Linfangioleiomiomatose/terapia , Subpopulações de Linfócitos T/transplante , Animais , Linhagem Celular , Linhagem Celular Tumoral , Técnicas de Cocultura , Técnicas de Inativação de Genes , Imunocompetência , Neoplasias Renais , Linfangioleiomiomatose/imunologia , Masculino , Melanoma/imunologia , Melanoma/terapia , Camundongos , Camundongos Mutantes , Camundongos SCID , Camundongos Transgênicos , Receptor de Morte Celular Programada 1/antagonistas & inibidores , Receptor de Morte Celular Programada 1/imunologia , Receptores de Antígenos de Linfócitos T/imunologia , Proteínas Recombinantes/imunologia , Especificidade do Receptor de Antígeno de Linfócitos T , Subpopulações de Linfócitos T/imunologia , Proteína 2 do Complexo Esclerose Tuberosa/deficiência , Proteína 2 do Complexo Esclerose Tuberosa/genética , Proteínas de Transporte Vesicular/deficiência , Antígeno gp100 de Melanoma/genética , Antígeno gp100 de Melanoma/imunologia
5.
Cancer Immunol Immunother ; 66(1): 63-75, 2017 01.
Artigo em Inglês | MEDLINE | ID: mdl-27787577

RESUMO

An immunotherapeutic strategy is discussed supporting anti-tumor activity toward malignancies overexpressing ganglioside D3. GD3 can be targeted by NKT cells when derived moieties are presented in the context of CD1d. NKT cells can support anti-tumor responses by secreting inflammatory cytokines and through cytotoxicity toward CD1d+GD3+ tumors. To overexpress GD3, we generated expression vector DNA and an adenoviral vector encoding the enzyme responsible for generating GD3 from its ubiquitous precursor GM3. We show that DNA encoding α-N-acetyl-neuraminide α-2,8-sialyltransferase 1 (SIAT8) introduced by gene gun vaccination in vivo leads to overexpression of GD3 and delays tumor growth. Delayed tumor growth is dependent on CD1d expression by host immune cells, as shown in experiments engaging CD1d knockout mice. A trend toward greater NKT cell populations among tumor-infiltrating lymphocytes is associated with SIAT8 vaccination. A single adenoviral vaccination introduces anti-tumor activity similarly to repeated vaccination with naked DNA. Here, greater NKT tumor infiltrates were accompanied by marked overexpression of IL-17 in the tumor, later switching to IL-4. Our results suggest that a single intramuscular adenoviral vaccination introduces overexpression of GD3 by antigen-presenting cells at the injection site, recruiting NKT cells that provide an inflammatory anti-tumor environment. We propose adenoviral SIAT8 (AdV-SIAT8) can slow the growth of GD3 expressing tumors in patients.


Assuntos
Gangliosídeos/biossíntese , Melanoma Experimental/imunologia , Melanoma/imunologia , Sialiltransferases/imunologia , Animais , Biolística , Linhagem Celular Tumoral , Gangliosídeos/imunologia , Células HEK293 , Humanos , Melanoma/enzimologia , Melanoma/terapia , Melanoma Experimental/enzimologia , Melanoma Experimental/terapia , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Sialiltransferases/genética , Vacinas de DNA/imunologia
6.
JCI Insight ; 6(22)2021 11 22.
Artigo em Inglês | MEDLINE | ID: mdl-34806651

RESUMO

Mutations underlying disease in tuberous sclerosis complex (TSC) give rise to tumors with biallelic mutations in TSC1 or TSC2 and hyperactive mammalian target of rapamycin complex 1 (mTORC1). Benign tumors might exhibit de novo expression of immunogens, targetable by immunotherapy. As tumors may rely on ganglioside D3 (GD3) expression for mTORC1 activation and growth, we compared GD3 expression in tissues from patients with TSC and controls. GD3 was overexpressed in affected tissues from patients with TSC and also in aging Tsc2+/- mice. As GD3 overexpression was not accompanied by marked natural immune responses to the target molecule, we performed preclinical studies with GD3 chimeric antigen receptor (CAR) T cells. Polyfunctional CAR T cells were cytotoxic toward GD3-overexpressing targets. In mice challenged with Tsc2-/- tumor cells, CAR T cells substantially and durably reduced the tumor burden, correlating with increased T cell infiltration. We also treated aged Tsc2+/- heterozygous (>60 weeks) mice that carry spontaneous Tsc2-/- tumors with GD3 CAR or untransduced T cells and evaluated them at endpoint. Following CAR T cell treatment, the majority of mice were tumor free while all control animals carried tumors. The outcomes demonstrate a strong treatment effect and suggest that targeting GD3 can be successful in TSC.


Assuntos
Imunoterapia Adotiva/métodos , Imunoterapia/métodos , Esclerose Tuberosa/genética , Animais , Feminino , Humanos , Camundongos
7.
PLoS One ; 15(1): e0227909, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-31986193

RESUMO

Vitiligo is a T-cell mediated skin disorder characterized by progressive loss of skin color. In individuals genetically predisposed to the disease, various triggers contribute to the initiation of vitiligo. Precipitating factors can stress the skin, leading to T-cell activation and recruitment. Though hereditary factors are implicated in the pathogenesis of vitiligo, it is unknown whether precipitating, stressful events play a role in vitiligo. To understand this, we utilized a validated perceived stress scale (PSS) to measure this parameter in vitiligo patients compared to persons without vitiligo. Additionally, we probed a clinical database, using a knowledge linking software called ROCKET, to gauge stress-related conditions in the vitiligo patient population. From a pool of patients in an existing database, a hundred individuals with vitiligo and twenty-five age- and sex-matched comparison group of individuals without vitiligo completed an online survey to quantify their levels of perceived stress. In parallel, patients described specifics of their disease condition, including the affected body sites, the extent, duration and activity of their vitiligo. Perceived stress was significantly higher among vitiligo individuals compared to those without vitiligo. ROCKET analyses suggested signs of metabolic-related disease (i.e., 'stress') preceding vitiligo development. No correlation was found between perceived stress and the stage or the extent of disease, suggesting that elevated stress may not be a consequence of pigment loss alone. The data provide further support for stress as a precipitating factor in vitiligo development.


Assuntos
Estresse Fisiológico , Estresse Psicológico/fisiopatologia , Vitiligo/fisiopatologia , Vitiligo/psicologia , Adolescente , Adulto , Idoso , Criança , Pré-Escolar , Feminino , Resposta ao Choque Térmico/genética , Humanos , Lactente , Recém-Nascido , Masculino , Melanócitos/metabolismo , Melanócitos/patologia , Pessoa de Meia-Idade , Pacientes/psicologia , Estresse Psicológico/complicações , Estresse Psicológico/genética , Estresse Psicológico/metabolismo , Inquéritos e Questionários , Linfócitos T/metabolismo , Linfócitos T/patologia , Vitiligo/complicações , Vitiligo/metabolismo , Adulto Jovem
8.
J Vis Exp ; (150)2019 08 02.
Artigo em Inglês | MEDLINE | ID: mdl-31424442

RESUMO

Cellular responses to external stimuli heavily rely on the set of receptors expressed at the cell surface at a given moment. Accordingly, the population of surface-expressed receptors is constantly adapting and subject to strict mechanisms of regulation. The paradigmatic example and one of the most studied trafficking events in biology is the regulated control of the synaptic expression of glutamate receptors (GluRs). GluRs mediate the vast majority of excitatory neurotransmission in the central nervous system and control physiological activity-dependent functional and structural changes at the synaptic and neuronal levels (e.g., synaptic plasticity). Modifications in the number, location, and subunit composition of surface expressed GluRs deeply affect neuronal function and, in fact, alterations in these factors are associated with different neuropathies. Presented here is a method to study GluR trafficking in dissociated hippocampal primary neurons. An "antibody-feeding" approach is used to differentially visualize GluR populations expressed at the surface and internal membranes. By labeling surface receptors on live cells and fixing them at different times to allow for receptors endocytosis and/or recycling, these trafficking processes can be evaluated and selectively studied. This is a versatile protocol that can be used in combination with pharmacological approaches or overexpression of altered receptors to gain valuable information about stimuli and molecular mechanisms affecting GluR trafficking. Similarly, it can be easily adapted to study other receptors or surface expressed proteins.


Assuntos
Hipocampo/metabolismo , Receptores de Glutamato/metabolismo , Animais , Anticorpos/metabolismo , Endocitose/fisiologia , Plasticidade Neuronal/fisiologia , Transporte Proteico/fisiologia , Pontos Quânticos , Receptores de N-Metil-D-Aspartato/metabolismo , Transmissão Sináptica/fisiologia
9.
Cell Rep ; 28(2): 332-341.e5, 2019 07 09.
Artigo em Inglês | MEDLINE | ID: mdl-31291571

RESUMO

In mature neurons, postsynaptic N-methyl-D-aspartate receptors (NMDARs) are segregated into two populations, synaptic and extrasynaptic, which differ in localization, function, and associated intracellular cascades. These two pools are connected via lateral diffusion, and receptor exchange between them modulates synaptic NMDAR content. Here, we identify the phosphorylation of the PDZ-ligand of the GluN2B subunit of NMDARs (at S1480) as a critical determinant in dynamically controlling NMDAR synaptic content. We find that phosphorylation of GluN2B at S1480 maintains NMDARs at extrasynaptic membranes as part of a protein complex containing protein phosphatase 1 (PP1). Global activation of NMDARs leads to the activation of PP1, which mediates dephosphorylation of GluN2B at S1480 to promote an increase in synaptic NMDAR content. Thus, PP1-mediated dephosphorylation of the GluN2B PDZ-ligand modulates the synaptic expression of NMDARs in mature neurons in an activity-dependent manner, a process with profound consequences for synaptic and structural plasticity, metaplasticity, and synaptic neurotransmission.


Assuntos
Receptores de N-Metil-D-Aspartato/metabolismo , Sinapses/metabolismo , Animais , Células Cultivadas , Feminino , Ligantes , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Neurônios/metabolismo , Domínios PDZ , Fosforilação , Proteína Fosfatase 1/metabolismo , Ratos , Ratos Sprague-Dawley , Receptores de N-Metil-D-Aspartato/genética
10.
Virology ; 500: 96-102, 2017 01.
Artigo em Inglês | MEDLINE | ID: mdl-27792904

RESUMO

Previous data demonstrate that Epstein-Barr Virus Latent Membrane Protein 2A (LMP2A) enhances IL-10 to promote the survival of LMP2A-expressing B cell lymphomas. Since STAT3 is an important regulator of IL-10 production, we hypothesized that LMP2A activates a signal transduction cascade that increases STAT3 phosphorylation to enhance IL-10. Using LMP2A-negative and -positive B cell lines, the data indicate that LMP2A requires the early signaling molecules of the Syk/RAS/PI3K pathway to increase IL-10. Additional studies indicate that the PI3K-regulated kinase, BTK, is responsible for phosphorylating STAT3, which ultimately mediates the LMP2A-dependent increase in IL-10. These data are the first to show that LMP2A signaling results in STAT3 phosphorylation in B cells through a PI3K/BTK-dependent pathway. With the use of BTK and STAT3 inhibitors to treat B cell lymphomas in clinical trials, these findings highlight the possibility of using new pharmaceutical approaches to treat EBV-associated lymphomas that express LMP2A.


Assuntos
Infecções por Vírus Epstein-Barr/metabolismo , Herpesvirus Humano 4/metabolismo , Interleucina-10/metabolismo , Proteínas Tirosina Quinases/metabolismo , Fator de Transcrição STAT3/metabolismo , Proteínas da Matriz Viral/metabolismo , Tirosina Quinase da Agamaglobulinemia , Linfócitos B/enzimologia , Linfócitos B/metabolismo , Linfócitos B/virologia , Linhagem Celular , Ativação Enzimática , Infecções por Vírus Epstein-Barr/enzimologia , Infecções por Vírus Epstein-Barr/genética , Infecções por Vírus Epstein-Barr/virologia , Herpesvirus Humano 4/genética , Interações Hospedeiro-Patógeno , Humanos , Interleucina-10/genética , Fosfatidilinositol 3-Quinases/metabolismo , Fosforilação , Proteínas Tirosina Quinases/genética , Fator de Transcrição STAT3/genética , Transdução de Sinais , Proteínas da Matriz Viral/genética
11.
Lung Cancer (Auckl) ; 6: 43-53, 2015.
Artigo em Inglês | MEDLINE | ID: mdl-28210150

RESUMO

Notch signaling plays a pivotal role during embryogenesis. It regulates three fundamental processes: lateral inhibition, boundary formation, and lineage specification. During post-natal life, Notch receptors and ligands control critical cell fate decisions both in compartments that are undergoing differentiation and in pluripotent progenitor cells. First recognized as a potent oncogene in certain lymphoblastic leukemias and mesothelium-derived tissue, the role of Notch signaling in epithelial, solid tumors has been far more controversial. The overall consequence of Notch signaling and which form of the Notch receptor drives malignancy in humans is deeply debated. Most likely, this is due to the high degree of context-dependent effects of Notch signaling. More recently, it has been discovered that Notch (especially Notch-1) can exert different, even opposite effects in the same tissue under differing microenvironmental conditions. Further complicating the understanding of Notch receptors is the recently discovered role for non-canonical Notch signaling. Additionally, the most frequent Notch signaling antagonists used in biological systems have been inhibitors of the transmembrane protease complex γ-secretase, which itself processes a plethora of class one transmembrane proteins and thus cannot be considered a Notch-specific upstream regulator. Here we review the available empirical evidence gathered in recent years concerning Notch receptors and ligands in non-small-cell lung carcinoma (NSCLC). Although an overview of the field reveals seemingly contradicting results, we propose that Notch signaling can be exploited as a therapeutic target in NSCLC and represents a promising complement to the current arsenal utilized to combat this malignancy, particularly in targeting NSCLC tissues under specific environmental conditions, such as hypoxia.

12.
Genetics ; 196(2): 539-55, 2014 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-24281154

RESUMO

Drosophila melanogaster has been widely used as a model of human Mendelian disease, but its value in modeling complex disease has received little attention. Fly models of complex disease would enable high-resolution mapping of disease-modifying loci and the identification of novel targets for therapeutic intervention. Here, we describe a fly model of permanent neonatal diabetes mellitus and explore the complexity of this model. The approach involves the transgenic expression of a misfolded mutant of human preproinsulin, hINS(C96Y), which is a cause of permanent neonatal diabetes. When expressed in fly imaginal discs, hINS(C96Y) causes a reduction of adult structures, including the eye, wing, and notum. Eye imaginal discs exhibit defects in both the structure and the arrangement of ommatidia. In the wing, expression of hINS(C96Y) leads to ectopic expression of veins and mechano-sensory organs, indicating disruption of wild-type signaling processes regulating cell fates. These readily measurable "disease" phenotypes are sensitive to temperature, gene dose, and sex. Mutant (but not wild-type) proinsulin expression in the eye imaginal disc induces IRE1-mediated XBP1 alternative splicing, a signal for endoplasmic reticulum stress response activation, and produces global change in gene expression. Mutant hINS transgene tester strains, when crossed to stocks from the Drosophila Genetic Reference Panel, produce F1 adults with a continuous range of disease phenotypes and large broad-sense heritability. Surprisingly, the severity of mutant hINS-induced disease in the eye is not correlated with that in the notum in these crosses, nor with eye reduction phenotypes caused by the expression of two dominant eye mutants acting in two different eye development pathways, Drop (Dr) or Lobe (L), when crossed into the same genetic backgrounds. The tissue specificity of genetic variability for mutant hINS-induced disease has, therefore, its own distinct signature. The genetic dominance of disease-specific phenotypic variability in our model of misfolded human proinsulin makes this approach amenable to genome-wide association study in a simple F1 screen of natural variation.


Assuntos
Diabetes Mellitus/genética , Proinsulina/genética , Animais , Animais Geneticamente Modificados , Análise por Conglomerados , Modelos Animais de Doenças , Drosophila melanogaster , Olho/metabolismo , Feminino , Dosagem de Genes , Perfilação da Expressão Gênica , Humanos , Masculino , Mutação , Fenótipo , Proinsulina/química , Dobramento de Proteína , Característica Quantitativa Herdável , Transcriptoma , Transgenes , Asas de Animais/metabolismo
13.
Genetics ; 196(2): 557-67, 2014 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-24281155

RESUMO

The identification and validation of gene-gene interactions is a major challenge in human studies. Here, we explore an approach for studying epistasis in humans using a Drosophila melanogaster model of neonatal diabetes mellitus. Expression of the mutant preproinsulin (hINS(C96Y)) in the eye imaginal disc mimics the human disease: it activates conserved stress-response pathways and leads to cell death (reduction in eye area). Dominant-acting variants in wild-derived inbred lines from the Drosophila Genetics Reference Panel produce a continuous, highly heritable distribution of eye-degeneration phenotypes in a hINS(C96Y) background. A genome-wide association study (GWAS) in 154 sequenced lines identified a sharp peak on chromosome 3L, which mapped to a 400-bp linkage block within an intron of the gene sulfateless (sfl). RNAi knockdown of sfl enhanced the eye-degeneration phenotype in a mutant-hINS-dependent manner. RNAi against two additional genes in the heparan sulfate (HS) biosynthetic pathway (ttv and botv), in which sfl acts, also modified the eye phenotype in a hINS(C96Y)-dependent manner, strongly suggesting a novel link between HS-modified proteins and cellular responses to misfolded proteins. Finally, we evaluated allele-specific expression difference between the two major sfl-intronic haplotypes in heterozygtes. The results showed significant heterogeneity in marker-associated gene expression, thereby leaving the causal mutation(s) and its mechanism unidentified. In conclusion, the ability to create a model of human genetic disease, map a QTL by GWAS to a specific gene, and validate its contribution to disease with available genetic resources and the potential to experimentally link the variant to a molecular mechanism demonstrate the many advantages Drosophila holds in determining the genetic underpinnings of human disease.


Assuntos
Diabetes Mellitus/genética , Variação Genética , Proinsulina/genética , Alelos , Animais , Animais Geneticamente Modificados , Diabetes Mellitus/metabolismo , Modelos Animais de Doenças , Proteínas de Drosophila/química , Proteínas de Drosophila/genética , Proteínas de Drosophila/metabolismo , Drosophila melanogaster , Epistasia Genética , Olho/metabolismo , Olho/patologia , Feminino , Expressão Gênica , Técnicas de Silenciamento de Genes , Estudo de Associação Genômica Ampla , Heparitina Sulfato/biossíntese , Humanos , Íntrons , Masculino , Mutação , Fenótipo , Proinsulina/química , Dobramento de Proteína , Interferência de RNA , Sulfotransferases/química , Sulfotransferases/genética , Sulfotransferases/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA