RESUMO
The L-type Ca2+ channel CaV 1.2 governs gene expression, cardiac contraction, and neuronal activity. Binding of α-actinin to the IQ motif of CaV 1.2 supports its surface localization and postsynaptic targeting in neurons. We report a bi-functional mechanism that restricts CaV 1.2 activity to its target sites. We solved separate NMR structures of the IQ motif (residues 1,646-1,664) bound to α-actinin-1 and to apo-calmodulin (apoCaM). The CaV 1.2 K1647A and Y1649A mutations, which impair α-actinin-1 but not apoCaM binding, but not the F1658A and K1662E mutations, which impair apoCaM but not α-actinin-1 binding, decreased single-channel open probability, gating charge movement, and its coupling to channel opening. Thus, α-actinin recruits CaV 1.2 to defined surface regions and simultaneously boosts its open probability so that CaV 1.2 is mostly active when appropriately localized.
Assuntos
Actinina/metabolismo , Canais de Cálcio Tipo L/metabolismo , Calmodulina/metabolismo , Actinina/genética , Substituição de Aminoácidos , Cálcio/metabolismo , Canais de Cálcio Tipo L/genética , Calmodulina/genética , Humanos , Mutação , Neurônios/metabolismo , Ligação ProteicaRESUMO
The L-type Ca2+ channel CaV1.2 controls gene expression, cardiac contraction, and neuronal activity. Calmodulin (CaM) governs CaV1.2 open probability (Po) and Ca2+-dependent inactivation (CDI) but the mechanisms remain unclear. Here, we present electrophysiological data that identify a half Ca2+-saturated CaM species (Ca2/CaM) with Ca2+ bound solely at the third and fourth EF-hands (EF3 and EF4) under resting Ca2+ concentrations (50-100 nM) that constitutively preassociates with CaV1.2 to promote Po and CDI. We also present an NMR structure of a complex between the CaV1.2 IQ motif (residues 1644-1665) and Ca2/CaM12', a calmodulin mutant in which Ca2+ binding to EF1 and EF2 is completely disabled. We found that the CaM12' N-lobe does not interact with the IQ motif. The CaM12' C-lobe bound two Ca2+ ions and formed close contacts with IQ residues I1654 and Y1657. I1654A and Y1657D mutations impaired CaM binding, CDI, and Po, as did disabling Ca2+ binding to EF3 and EF4 in the CaM34 mutant when compared to WT CaM. Accordingly, a previously unappreciated Ca2/CaM species promotes CaV1.2 Po and CDI, identifying Ca2/CaM as an important mediator of Ca signaling.
Assuntos
Canais de Cálcio Tipo L , Calmodulina , Calmodulina/metabolismo , Canais de Cálcio Tipo L/metabolismo , Sinalização do Cálcio , Ligação Proteica , Mutação , Cálcio/metabolismoRESUMO
Diabetic vasculopathy is a significant cause of morbidity and mortality in the diabetic population. Hyperglycemia, one of the central metabolic abnormalities in diabetes, has been associated with vascular dysfunction due to endothelial cell damage. However, studies also point toward vascular smooth muscle as a locus for hyperglycemia-induced vascular dysfunction. Emerging evidence implicates hyperglycemia-induced regulation of vascular L-type Ca2+ channels CaV1.2 as a potential mechanism for vascular dysfunction during diabetes. This chapter summarizes our current understanding of vascular CaV1.2 channels and their regulation during physiological and hyperglycemia/diabetes conditions. We will emphasize the role of CaV1.2 in vascular smooth muscle, the effects of elevated glucose on CaV1.2 function, and the mechanisms underlying its dysregulation in hyperglycemia and diabetes. We conclude by examining future directions and gaps in knowledge regarding CaV1.2 regulation in health and during diabetes.
Assuntos
Diabetes Mellitus , Hiperglicemia , Humanos , Miócitos de Músculo Liso/metabolismo , Canais de Cálcio Tipo L/metabolismo , Canais de Cálcio Tipo L/farmacologia , Músculo Liso Vascular/fisiologia , Diabetes Mellitus/metabolismo , Hiperglicemia/metabolismoRESUMO
Alternative splicing changes the CaV1.2 calcium channel electrophysiological property, but the in vivo significance of such altered channel function is lacking. Structure-function studies of heterologously expressed CaV1.2 channels could not recapitulate channel function in the native milieu of the cardiomyocyte. To address this gap in knowledge, we investigated the role of alternative exon 33 of the CaV1.2 calcium channel in heart function. Exclusion of exon 33 in CaV1.2 channels has been reported to shift the activation potential -10.4 mV to the hyperpolarized direction, and increased expression of CaV1.2Δ33 channels was observed in rat myocardial infarcted hearts. However, how a change in CaV1.2 channel electrophysiological property, due to alternative splicing, might affect cardiac function in vivo is unknown. To address these questions, we generated mCacna1c exon 33-/--null mice. These mice contained CaV1.2Δ33 channels with a gain-of-function that included conduction of larger currents that reflects a shift in voltage dependence and a modest increase in single-channel open probability. This altered channel property underscored the development of ventricular arrhythmia, which is reflected in significantly more deaths of exon 33-/- mice from ß-adrenergic stimulation. In vivo telemetric recordings also confirmed increased frequencies in premature ventricular contractions, tachycardia, and lengthened QT interval. Taken together, the significant decrease or absence of exon 33-containing CaV1.2 channels is potentially proarrhythmic in the heart. Of clinical relevance, human ischemic and dilated cardiomyopathy hearts showed increased inclusion of exon 33. However, the possible role that inclusion of exon 33 in CaV1.2 channels may play in the pathogenesis of human heart failure remains unclear.
Assuntos
Potenciais de Ação/genética , Canais de Cálcio Tipo L/genética , Síndrome do QT Longo/genética , Taquicardia/genética , Complexos Ventriculares Prematuros/genética , Potenciais de Ação/fisiologia , Processamento Alternativo/genética , Animais , Bloqueadores dos Canais de Cálcio/farmacologia , Canais de Cálcio Tipo L/metabolismo , Células Cultivadas , Colforsina/farmacologia , Fenômenos Eletrofisiológicos/genética , Insuficiência Cardíaca/genética , Insuficiência Cardíaca/patologia , Isoproterenol/farmacologia , Síndrome do QT Longo/patologia , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Miocárdio/metabolismo , Miócitos Cardíacos/metabolismo , Nifedipino/farmacologia , Ratos , Deleção de Sequência/genética , Taquicardia/patologia , Complexos Ventriculares Prematuros/patologiaRESUMO
The CaV1.2 L-type calcium channel is a key conduit for Ca2+ influx to initiate excitation-contraction coupling for contraction of the heart and vasoconstriction of the arteries and for altering membrane excitability in neurons. Its α1C pore-forming subunit is known to undergo extensive alternative splicing to produce many CaV1.2 isoforms that differ in their electrophysiological and pharmacological properties. Here, we examined the structure-function relationship of human CaV1.2 with respect to the inclusion or exclusion of mutually exclusive exons of the N-terminus exons 1/1a and IS6 segment exons 8/8a. These exons showed tissue selectivity in their expression patterns: heart variant 1a/8a, one smooth-muscle variant 1/8, and a brain isoform 1/8a. Overall, the 1/8a, when coexpressed with CaVß2a, displayed a significant and distinct shift in voltage-dependent activation and inactivation and inactivation kinetics as compared to the other three splice variants. Further analysis showed a clear additive effect of the hyperpolarization shift in V1/2inact of CaV1.2 channels containing exon 1 in combination with 8a. However, this additive effect was less distinct for V1/2act. However, the measured effects were ß-subunit-dependent when comparing CaVß2a with CaVß3 coexpression. Notably, calcium-dependent inactivation mediated by local Ca2+-sensing via the N-lobe of calmodulin was significantly enhanced in exon-1-containing CaV1.2 as compared to exon-1a-containing CaV1.2 channels. At the cellular level, the current densities of the 1/8a or 1/8 variants were significantly larger than the 1a/8a and 1a/8 variants when coexpressed either with CaVß2a or CaVß3 subunit. This finding correlated well with a higher channel surface expression for the exon 1-CaV1.2 isoform that we quantified by protein surface-expression levels or by gating currents. Our data also provided a deeper molecular understanding of the altered biophysical properties of alternatively spliced human CaV1.2 channels by directly comparing unitary single-channel events with macroscopic whole-cell currents.
Assuntos
Processamento Alternativo , Canais de Cálcio Tipo L/química , Canais de Cálcio Tipo L/genética , Regulação da Expressão Gênica , Canais de Cálcio Tipo L/metabolismo , Éxons/genética , Células HEK293 , Humanos , Ativação do Canal Iônico/genética , Cinética , Domínios Proteicos , Propriedades de SuperfícieRESUMO
BACKGROUND: Increased vascular CaV1.2 channel function causes enhanced arterial tone during hypertension. This is mediated by elevations in angiotensin II/protein kinase C signaling. Yet, the mechanisms underlying these changes are unclear. We hypothesize that α1C phosphorylation at serine 1928 (S1928) is a key event mediating increased CaV1.2 channel function and vascular reactivity during angiotensin II signaling and hypertension. METHODS AND RESULTS: The hypothesis was examined in freshly isolated mesenteric arteries and arterial myocytes from control and angiotensin II-infused mice. Specific techniques include superresolution imaging, proximity ligation assay, patch-clamp electrophysiology, Ca2+ imaging, pressure myography, laser speckle imaging, and blood pressure telemetry. Hierarchical "nested" and appropriate parametric or nonparametric t test and ANOVAs were used to assess statistical differences. We found that angiotensin II redistributed the CaV1.2 pore-forming α1C subunit into larger clusters. This was correlated with elevated CaV1.2 channel activity and cooperativity, global intracellular Ca2+ and contraction of arterial myocytes, enhanced myogenic tone, and altered blood flow in wild-type mice. These angiotensin II-induced changes were prevented/ameliorated in cells/arteries from S1928 mutated to alanine knockin mice, which contain a negative modulation of the α1C S1928 phosphorylation site. In angiotensin II-induced hypertension, increased α1C clustering, CaV1.2 activity and cooperativity, myogenic tone, and blood pressure in wild-type cells/tissue/mice were averted/reduced in S1928 mutated to alanine samples. CONCLUSIONS: Results suggest an essential role for α1C S1928 phosphorylation in regulating channel distribution, activity and gating modality, and vascular function during angiotensin II signaling and hypertension. Phosphorylation of this single vascular α1C amino acid could be a risk factor for hypertension that may be targeted for therapeutic intervention.
Assuntos
Angiotensina II , Canais de Cálcio Tipo L , Hipertensão , Artérias Mesentéricas , Animais , Canais de Cálcio Tipo L/metabolismo , Canais de Cálcio Tipo L/genética , Fosforilação , Angiotensina II/farmacologia , Artérias Mesentéricas/metabolismo , Artérias Mesentéricas/fisiopatologia , Hipertensão/fisiopatologia , Hipertensão/metabolismo , Hipertensão/genética , Masculino , Pressão Sanguínea/fisiologia , Camundongos Endogâmicos C57BL , Músculo Liso Vascular/metabolismo , Músculo Liso Vascular/fisiopatologia , Vasoconstrição/efeitos dos fármacos , Camundongos , Miócitos de Músculo Liso/metabolismo , Modelos Animais de Doenças , Sinalização do CálcioRESUMO
Sediments of the Elbe River have been extremely polluted by contaminants originating from previous large-scale hexachlorocyclohexane (HCH) production and the application of γ-HCH (lindane) in its catchment in the second half of the twentieth century. In order to gain knowledge on bioaccumulation processes at lower trophic levels, field investigations of HCHs in macroinvertebrates were carried out along the longitudinal profile of the Elbe and tributary. Among the sites studied, concentrations in macroinvertebrates ranged within five orders of magnitude (0.01-100 µg/kg). In general, lower values of HCH isomers were observed at all Czech sites (mostly <1 µg/kg) compared with those in Germany. At the most contaminated site, Spittelwasser brook (a tributary of the Mulde), extremely high concentrations were measured (up to 234 µg/kg α-HCH and 587 µg/kg ß-HCH in Hydropsychidae). In contrast, the Obríství site, though also influenced by HCH production facilities, showed only negligibly elevated values (mostly <1 µg/kg). Results showed that fairly high levels of α-HCH and ß-HCH compared to γ-HCH can still be detected in aquatic environments of the Elbe catchment, and these concentrations are decreasing over time to a lesser extent than γ-HCH. Higher HCH concentrations in sediments in the springtime are considered to be the result of erosion and transport processes during and after spring floods, and lower concentrations at sites downstream are thought to be caused by the time lapse involved in the transportation of contaminated particles from upstream. In addition, comparison with fish (bream) data from the literature revealed no increase in tissue concentrations between invertebrates and fish.
Assuntos
Monitoramento Ambiental , Hexaclorobenzeno/metabolismo , Invertebrados/metabolismo , Poluentes Químicos da Água/metabolismo , Animais , Cadeia Alimentar , Sedimentos Geológicos/química , Alemanha , Hexaclorobenzeno/análise , Hexaclorocicloexano/análise , Hexaclorocicloexano/metabolismo , Rios/química , Poluentes Químicos da Água/análise , Poluição Química da Água/estatística & dados numéricosRESUMO
The cellular mechanisms mediating norepinephrine (NE) functions in brain to result in behaviors are unknown. We identified the L-type Ca2+ channel (LTCC) CaV1.2 as a principal target for Gq-coupled α1-adrenergic receptors (ARs). α1AR signaling increased LTCC activity in hippocampal neurons. This regulation required protein kinase C (PKC)-mediated activation of the tyrosine kinases Pyk2 and, downstream, Src. Pyk2 and Src were associated with CaV1.2. In model neuroendocrine PC12 cells, stimulation of PKC induced tyrosine phosphorylation of CaV1.2, a modification abrogated by inhibition of Pyk2 and Src. Upregulation of LTCC activity by α1AR and formation of a signaling complex with PKC, Pyk2, and Src suggests that CaV1.2 is a central conduit for signaling by NE. Indeed, a form of hippocampal long-term potentiation (LTP) in young mice requires both the LTCC and α1AR stimulation. Inhibition of Pyk2 and Src blocked this LTP, indicating that enhancement of CaV1.2 activity via α1AR-Pyk2-Src signaling regulates synaptic strength.
Assuntos
Quinase 2 de Adesão Focal , Potenciação de Longa Duração , Ratos , Camundongos , Animais , Quinase 2 de Adesão Focal/metabolismo , Roedores , Fosforilação , Tirosina/metabolismo , Receptores Adrenérgicos/metabolismo , Quinases da Família src/metabolismoRESUMO
OBJECTIVES: Treatment for atypical endometrial hyperplasia (AEH) is based on pathologic diagnosis. About 40% of AEH is found to be carcinoma at surgery. This study's objective is to derive an objective characterization of nuclei from cases diagnosed as AEH or superficially invasive endometrial cancer (SIEC). METHODS: Cases from GOG study 167A were classified by a central pathology committee as AEH (n=39) or SIEC (n=39). High resolution digitized images of cell nuclei were recorded. Features of the nuclear chromatin pattern were computed. Classification rules were derived by discriminant analysis. RESULTS: Nuclei from cases of AEH and SIEC occupy the same range on a progression curve for endometrial lesions. Cases of AEH and SIEC both comprise nuclei of two phenotypes: hyperplastic characteristics and premalignant/neoplastic characteristics. The principal difference between AEH and SIEC is the percentage of premalignant/neoplastic nuclei. When this percentage approaches 50-60% superficial invasion is likely. SIEC may develop already from lesions at the low end of the progression curve. CONCLUSIONS: AEH comprises cases which may constitute a low risk group involving <40% of AEH cases. These cases hold a percentage of <20% of nuclei of a preneoplastic phenotype. AEH cases from the central and high end of progression have >40% of nuclei of preneoplastic phenotype. Nuclei of the preneoplastic phenotype in AEH lesions are almost indistinguishable from nuclei in SIEC, where this percentage exceeds 60%. The percentage of nuclei of the preneoplastic phenotype in AEH esions might serve as criterion for assessment of risk for the development of invasive disease.
Assuntos
Núcleo Celular/ultraestrutura , Cromatina/ultraestrutura , Hiperplasia Endometrial/patologia , Neoplasias do Endométrio/patologia , Cariometria , Análise Discriminante , Progressão da Doença , Neoplasias do Endométrio/ultraestrutura , Feminino , Humanos , Invasividade Neoplásica , Fenótipo , Estudos Prospectivos , Medição de RiscoRESUMO
A novel 4/8 subtype α-conotoxin, Vt1.27 (NCCMFHTCPIDYSRFNC-NH2), was identified from Conus vitulinus in the South China Sea by RACE methods. The peptide was synthesized and structurally characterized. Similar to other α-conotoxins that target neuronal nicotinic acetylcholine receptor (nAChR) subtypes, Vt1.27 inhibited the rat α3ß2 nAChR subtype (IC50 = 1160 nM) and was inactive at voltage-gated sodium and potassium channels in rat sensory neurons. However, Vt1.27 inhibited high voltage-activated N-type (CaV2.2) calcium channels expressed in HEK293T cells with an IC50 of 398 nM. An alanine scan of the peptide showed that residues Phe5, Pro9, Ile10, and Ser13 contribute significantly to the inhibitory activity of Vt1.27. The molecular dockings indicate that Vt1.27 inhibits the transmembrane region of CaV2.2, which is different from that of ω-conotoxins. Furthermore, Vt1.27 exhibited potent anti-allodynic effect in rat partial sciatic nerve injury (PNL) and chronic constriction injury (CCI) pain models at 10 nmol/kg level with the intramuscular injection. The pain threshold elevation of Vt1.27 groups was higher than that of α-conotoxin Vc1.1 in CCI rat models. These findings expand our knowledge of targets of α-conotoxins and potentially provide a potent, anti-allodynic peptide for the treatment of neuropathic pain.
RESUMO
Several Conus-derived venom peptides are promising lead compounds for the management of neuropathic pain, with α-conotoxins being of particular interest. Modification of the interlocked disulfide framework of α-conotoxin Vc1.1 has been achieved using on-resin alkyne metathesis. Although introduction of a metabolically stable alkyne motif significantly disrupts backbone topography, the structural modification generates a potent and selective GABAB receptor agonist that inhibits Cav2.2 channels and exhibits dose-dependent reversal of mechanical allodynia in a behavioral rat model of neuropathic pain. The findings herein support the hypothesis that analgesia can be achieved via activation of GABABRs expressed in dorsal root ganglion (DRG) sensory neurons.
Assuntos
Alcinos/uso terapêutico , Analgésicos/uso terapêutico , Conotoxinas/uso terapêutico , Hiperalgesia/tratamento farmacológico , Neuralgia/tratamento farmacológico , Alcinos/química , Analgésicos/química , Animais , Células Cultivadas , Conotoxinas/química , Caramujo Conus/química , Modelos Animais de Doenças , Feminino , Células HEK293 , Humanos , Hiperalgesia/fisiopatologia , Masculino , Modelos Moleculares , Neuralgia/fisiopatologia , Ratos Sprague-Dawley , XenopusRESUMO
Ca2+ influx through the L-type Ca2+ channel Cav1.2 triggers each heartbeat. The fight-or-flight response induces the release of the stress response hormone norepinephrine to stimulate ß-adrenergic receptors, cAMP production, and protein kinase A activity to augment Ca2+ influx through Cav1.2 and, consequently, cardiomyocyte contractility. Emerging evidence shows that Cav1.2 is regulated by different mechanisms in cardiomyocytes compared to neurons and vascular smooth muscle cells.
Assuntos
Adrenérgicos/metabolismo , Canais de Cálcio Tipo L/metabolismo , Sinalização do Cálcio , AMP Cíclico/metabolismo , Músculo Liso Vascular/metabolismo , Miócitos Cardíacos/metabolismo , Miócitos de Músculo Liso/metabolismo , Animais , HumanosRESUMO
The L-type Ca2+ channel CaV1.2 is essential for arterial myocyte excitability, gene expression and contraction. Elevations in extracellular glucose (hyperglycemia) potentiate vascular L-type Ca2+ channel via PKA, but the underlying mechanisms are unclear. Here, we find that cAMP synthesis in response to elevated glucose and the selective P2Y11 agonist NF546 is blocked by disruption of A-kinase anchoring protein 5 (AKAP5) function in arterial myocytes. Glucose and NF546-induced potentiation of L-type Ca2+ channels, vasoconstriction and decreased blood flow are prevented in AKAP5 null arterial myocytes/arteries. These responses are nucleated via the AKAP5-dependent clustering of P2Y11/ P2Y11-like receptors, AC5, PKA and CaV1.2 into nanocomplexes at the plasma membrane of human and mouse arterial myocytes. Hence, data reveal an AKAP5 signaling module that regulates L-type Ca2+ channel activity and vascular reactivity upon elevated glucose. This AKAP5-anchored nanocomplex may contribute to vascular complications during diabetic hyperglycemia.
Assuntos
Proteínas de Ancoragem à Quinase A/metabolismo , Artérias/metabolismo , Canais de Cálcio Tipo L/metabolismo , Proteínas de Ancoragem à Quinase A/genética , Animais , Canais de Cálcio Tipo L/genética , AMP Cíclico/metabolismo , Glucose/metabolismo , Hiperglicemia/genética , Hiperglicemia/metabolismo , Camundongos Knockout , Células Musculares/metabolismo , Ligação ProteicaRESUMO
Aromatase inhibitors are currently being evaluated as preventive agents in post-menopausal women at high risk for breast cancer. A phase II trial of 42 women on hormone replacement therapy (HRT) treated with letrozole for 6 months showed Ki-67 was reduced by 66% but showed no change in cytomorphology or Masood score. Subsequent image analytical procedures (karyometry) conducted on a subset of the samples captured subvisual information that showed reduced cellular abnormality after 6 months of letrozole. In the present study we expanded on the preliminary karyometry study to determine if the change in karyometric measurements corresponded to changes in risk biomarkers quantified in the Phase II trial; and secondly, whether these biomarkers might be used together to serve as markers of response in individual cases. Pap stained slides from the Phase II trial were used. Epithelial cell images were digitized on a CCD video-microphotometer and the nuclei were segmented from the field using a semiautomatic algorithm. Nine out of 37 cases analyzed showed a numerical decrease in all three markers, although only three of these exhibited changes substantial enough to be considered as an improvement. However, 12 cases showed improvement by cytology (a decrease in Masood score of at least 2), an additional 13 cases demonstrated a reduction in Ki-67 expression by 50% of the median baseline value, and an additional five cases exhibited a decrease of at least 10% in abnormal cells by nuclear morphometry. Thus, a total of 30 of 37 cases (81%) showed improvement in at least one marker. There was no correlation between changes in Ki-67%, karyometric abnormality, and Masood score change other than specimens that exhibited an improvement in cytology also displayed greater decreases in nuclear morphometry abnormalities. Given the heterogeneity of mechanisms leading to malignancy, the quantitative analysis of nuclear chromatin patterns may be valuable as a global, or integrating, biomarker of change in chemoprevention studies in conjunction with additional markers. Correlation with long term clinical outcome is needed to validate meaningful combinations of informative biomarkers.
Assuntos
Inibidores da Aromatase/uso terapêutico , Neoplasias da Mama/patologia , Processamento de Imagem Assistida por Computador , Nitrilas/uso terapêutico , Triazóis/uso terapêutico , Biópsia por Agulha Fina , Neoplasias da Mama/tratamento farmacológico , Neoplasias da Mama/etiologia , Núcleo Celular/ultraestrutura , Ensaios Clínicos Fase II como Assunto , Células Epiteliais/patologia , Feminino , Seguimentos , Humanos , Antígeno Ki-67/metabolismo , Letrozol , Mamografia , Menopausa , Projetos Piloto , Valor Preditivo dos Testes , Fatores de Risco , Resultado do TratamentoRESUMO
A large body of epidemiologic evidence has shown that use of progestin-containing preparations lowers ovarian cancer risk. The purpose of the current study was to gather further preclinical evidence supporting progestins as cancer chemopreventives by demonstrating progestin-activation of surrogate endpoint biomarkers pertinent to cancer prevention in the genital tract of women at increased risk of ovarian cancer. There were 64 women enrolled in a multi-institutional randomized trial who chose to undergo risk-reducing bilateral salpingo-oophorectomy (BSO) and to receive the progestin levonorgestrel or placebo for 4 to 6 weeks prior to undergoing BSO. The ovarian and fallopian tube epithelia (FTE) were compared immunohistochemically for effects of levonorgestrel on apoptosis (primary endpoint). Secondary endpoints included TGFß isoform expression, proliferation, and karyometric features of nuclear abnormality. In both the ovary and fallopian tube, levonorgestrel did not confer significant changes in apoptosis or expression of the TGFß1, 2, or 3 isoforms. In the ovarian epithelium, treatment with levonorgestrel significantly decreased the proliferation index. The mean ovarian Ki-67 value in the placebo arm was 2.027 per 100 cells versus 0.775 per 100 cells in the levonorgestrel arm (two-sided P value via Mann-Whitney U test = 0.0114). The karyometric signature of nuclei in both the ovarian and FTE deviated significantly from normal controls (women at average risk of ovarian cancer), but was significantly less abnormal in women treated with levonorgestrel. These karyometric data further support the idea that progestins may clear genetically abnormal cells and act as chemopreventive agents against ovarian and fallopian tube cancer.
Assuntos
Contraceptivos Hormonais/uso terapêutico , Neoplasias das Tubas Uterinas/tratamento farmacológico , Levanogestrel/uso terapêutico , Neoplasias Ovarianas/tratamento farmacológico , Adulto , Idoso , Apoptose , Proliferação de Células , Neoplasias das Tubas Uterinas/patologia , Feminino , Seguimentos , Humanos , Pessoa de Meia-Idade , Neoplasias Ovarianas/patologia , PrognósticoRESUMO
G protein-coupled receptors (GPCRs) transduce pleiotropic intracellular signals in mammalian cells. Here, we report neuronal excitability of ß-blockers carvedilol and alprenolol at clinically relevant nanomolar concentrations. Carvedilol and alprenolol activate ß2AR, which promote G protein signaling and cAMP/PKA activities without action of G protein receptor kinases (GRKs). The cAMP/PKA activities are restricted within the immediate vicinity of activated ß2AR, leading to selectively enhance PKA-dependent phosphorylation and stimulation of endogenous L-type calcium channel (LTCC) but not AMPA receptor in rat hippocampal neurons. Moreover, we have engineered a mutant ß2AR that lacks the catecholamine binding pocket. This mutant is preferentially activated by carvedilol but not the orthosteric agonist isoproterenol. Carvedilol activates the mutant ß2AR in mouse hippocampal neurons augmenting LTCC activity through cAMP/PKA signaling. Together, our study identifies a mechanism by which ß-blocker-dependent activation of GPCRs promotes spatially restricted cAMP/PKA signaling to selectively target membrane downstream effectors such as LTCC in neurons.
Assuntos
Antagonistas Adrenérgicos beta/metabolismo , Canais de Cálcio Tipo L/metabolismo , Neurônios/efeitos dos fármacos , Neurônios/metabolismo , Receptores Adrenérgicos beta 2/metabolismo , Transdução de Sinais , Alprenolol/metabolismo , Animais , Carvedilol/metabolismo , AMP Cíclico/metabolismo , Proteínas Quinases Dependentes de AMP Cíclico/metabolismo , Células HEK293 , Humanos , Camundongos , Camundongos Knockout , RatosRESUMO
OBJECTIVE: This study was designed to establish estimates of the smallest effects due to chemopreventive intervention detectable by karyometry in skin biopsies. METHODS: Estimates of the smallest change of statistical significance and estimates of the power of the test were derived for several key features descriptive of the distribution of nuclear chromatin. Results from triplicate biopsies from the same case were used to provide estimates of the within-case, biopsy-to-biopsy variance. RESULTS: Generally, a change in feature value due to chemopreventive intervention can be statistically secured when it amounts to 5% to 10%. In clinical trials where matched baseline and end of study biopsies from the same cases are available, paired comparison ANOVA can detect a 2% change on samples of 25 cases. Establishing efficacy in individual cases requires a change in feature values on the order of 10% to 15%. CONCLUSIONS: Karyometry provides a sensitive, quantitative method for the assessment of efficacy of chemoprevention. The effects of within-case, biopsy-to-biopsy variance need to be considered only in the evaluation of individual cases and are on the order of 5% in skin biopsies.
Assuntos
Biópsia/métodos , Quimioprevenção/métodos , Cariometria/métodos , Neoplasias Cutâneas/patologia , Pele/patologia , Vitamina A/uso terapêutico , Vitaminas/uso terapêutico , Diagnóstico Diferencial , Humanos , Reprodutibilidade dos Testes , Sensibilidade e Especificidade , Neoplasias Cutâneas/prevenção & controleRESUMO
Since the efficacy of oseltamivir carboxylate (OC) as the active metabolite of Tamiflu has been demonstrated against influenza viruses and even against the avian influenza virus (H5N1), millions of Tamiflu treatment courses are stockpiled worldwide. This was done not at least to follow the recommendations of the World Health Organization (WHO) to cope with a viral influenza pandemic. Concentrations up to 26-32 microg l(-1) OC in river catchment areas in the United States and in the United Kingdom had been predicted recently for a pandemic case, assuming an apparent persistence of the Tamiflu metabolite. Such concentrations may involve the risk of generation of antiviral resistance. But there is still a lack of data concerning the stability of OC in a surface water environment. Under this aspect these predictions have to be validated with concrete facts about the environmental fate of OC. In this article we summarized the results of three different daylight exposure experiments with OC in different waters under sterile and non-sterile conditions simulating shallow water processes at the latitude of approximately 52 degrees N. Using a river water solution containing 50 microg l(-1) OC under non-sterile conditions a half-life time of 17.8 days was observed. Direct photolysis plays no or only a negligible role for the decomposition of OC. Degradation of OC seems to occur as a combination of microbial metabolism and indirect photolysis.