Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 29
Filtrar
2.
J Phycol ; 60(3): 642-653, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38634250

RESUMO

Fluctuations in dissolved oxygen (DO) contents in natural waters can become intense during cyanobacteria blooms. In a reconnaissance study, we investigated DO concentrations and stable isotope dynamics during a laboratory experiment with the cyanobacterium Planktothrix rubescens in order to obtain insights into primary production under specific conditions. This observation was extended to sub-daily timescales with alternating light and dark phases. Dissolved oxygen concentrations and its isotopes (δ18ODO) ranged from 0.02 to 0.06 mmol · L-1 and from +9.6‰ to +23.4‰. The δ18ODO proved to be more sensitive than concentration measurements in response to metabolic variation and registered earlier shifts to dominance by respiration. Oxygen (O2) contents in the headspace and its isotopes (δ18OO2) ranged from 2.62 to 3.20 mmol · L-1 and from +9.8‰ to +21.9‰. Headspace samples showed less fluctuations in concentration and isotope trends because aquatic processes were hardly able to alter signals once the gas had reached the headspace. Headspace δ18OO2 values were corrected for gas-water equilibration and were determined to be higher than the mean δ18OH2O of -8.7‰. This finding suggests that counteracting respiration was important even during the highest photosynthetic activity. Additionally, headspace analyses led to the definition of a fractionation factor for respiration (αR) of this cyanobacterium with a value of 0.980. This value confirms the one commonly used for cyanobacteria. Our findings may become important for the management of water bodies where decreases in DO are caused by cyanobacteria.


Assuntos
Cianobactérias , Isótopos de Oxigênio , Oxigênio , Isótopos de Oxigênio/análise , Oxigênio/metabolismo , Cianobactérias/metabolismo , Fotossíntese
3.
Rapid Commun Mass Spectrom ; 35(6): e9024, 2021 Mar 30.
Artigo em Inglês | MEDLINE | ID: mdl-33305417

RESUMO

RATIONALE: Investigations of the isotope ratios of dissolved oxygen (δ18 ODO ) provide valuable information about the oxygen cycle in aquatic systems. However, oxidation of Fe(II) may change pristine δ18 ODO values during storage and can lead to a misinterpretation. We sampled an Fe(II)-rich spring system and measured δ18 ODO values at various time intervals in order to determine influences of Fe-oxidation. METHODS: Water samples were collected from an Fe-rich spring and related stream and the δ18 ODO values were measured in fresh, 4- and 13-day-old samples with an isotope ratio mass spectrometer. Three replicates were measured for each sample with a 1σ of ± 0.2‰. On-site parameters and Fe(II) contents were also measured over the course of the spring system by multi-parameter probes and spectrophotometry. RESULTS: The δ18 ODO values over the course of the spring system in fresh, 4- and 13-day-old samples revealed differences of up to 8‰. We explain this increase by the consumption of DO by Fe(II)-oxidation. After a flow length of 85 m the differences in δ18 ODO values between fresh and older samples decreased because most of the Fe(II) was consumed. CONCLUSIONS: False interpretations of δ18 ODO values are possible if Fe-rich water samples are measured after too long storage, and we recommend measurement immediately after sampling.

4.
Rapid Commun Mass Spectrom ; 32(20): 1799-1810, 2018 Oct 30.
Artigo em Inglês | MEDLINE | ID: mdl-30007043

RESUMO

RATIONALE: Knowledge of the accuracy and precision for oxygen (δ18 O values) and hydrogen (δ2 H values) stable isotope analyses of geothermal fluid samples is important to understand geothermal reservoir processes, such as partial boiling-condensation and encroachment of cold and reinjected waters. The challenging aspects of the analytical techniques for this specific matrix include memory effects and higher scatter of delta values with increasing total dissolved solids (TDS) concentrations, deterioration of Pt-catalysts by dissolved/gaseous H2 S for hydrogen isotope equilibration measurements and isotope salt effects that offset isotope ratios determined by gas equilibration techniques. METHODS: An inter-laboratory comparison exercise for the determination of the δ18 O and δ2 H values of nine geothermal fluid samples was conducted among eleven laboratories from eight countries (CeMIEGeo2017). The delta values were measured by dual inlet isotope ratio mass spectrometry (DI-IRMS), continuous flow IRMS (CF-IRMS) and/or laser absorption spectroscopy (LAS). Moreover, five of these laboratories analyzed an additional sample set at least one month after the analysis period of the first set. Statistical evaluation of all the results was performed to obtain the expected isotope ratios of each sample, which were then subsequently used in deep reservoir fluid composition calculations. RESULTS: The overall analytical precisions of the measurements were ± 0.2‰ for δ18 O values and ± 2.0‰ for δ2 H values within the 95% confidence interval. CONCLUSIONS: The measured and calculated δ18 O and δ2 H values of water sampled at the weir box, separator and wellhead of geothermal wells suggest the existence of hydrogen and oxygen isotope-exchange equilibrium between the liquid and vapor phases at all sampling points in the well. Thus, both procedures for calculating the isotopic compositions of the deep geothermal reservoir fluid - using either the analytical data of the liquid phase at the weir box together with those of vapor at the separator or the analytical data of liquid and vapor phases at the separator -are equally valid.

5.
Environ Manage ; 58(3): 491-503, 2016 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-27318992

RESUMO

Groundwater is one of the most important environmental resources and its use continuously rises globally for industrial, agricultural, and drinking water supply purposes. Because of its importance, more knowledge about the volume of usable groundwater is necessary to satisfy the global demand. Due to the challenges in quantifying the volume of available global groundwater, studies which aim to assess its magnitude are limited in number. They are further restricted in scope and depth of analysis as, in most cases, they do not explain how the estimates of global groundwater resources have been obtained, what methods have been used to generate the figures and what levels of uncertainty exist. This article reviews the estimates of global groundwater resources. It finds that the level of uncertainty attached to existing numbers often exceeds 100 % and strives to establish the reasons for discrepancy. The outcome of this study outlines the need for a new agenda in water research with a more pronounced focus on groundwater. This new research agenda should aim at enhancing the quality and quantity of data provision on local and regional groundwater stocks and flows. This knowledge enhancement can serve as a basis to improve policy-making on groundwater resources globally. Research-informed policies will facilitate more effective groundwater management practices to ensure a more rapid progress of the global water sector towards the goal of sustainability.


Assuntos
Conservação dos Recursos Naturais/métodos , Água Subterrânea/análise , Internacionalidade , Formulação de Políticas , Projetos de Pesquisa , Recursos Hídricos/provisão & distribuição , Agricultura , Avaliação de Programas e Projetos de Saúde , Abastecimento de Água/normas
6.
Anal Chem ; 86(24): 12191-8, 2014 Dec 16.
Artigo em Inglês | MEDLINE | ID: mdl-25375020

RESUMO

A newly developed isotope ratio laser spectrometer for CO2 analyses has been tested during a tracer experiment at the Ketzin pilot site (northern Germany) for CO2 storage. For the experiment, 500 tons of CO2 from a natural CO2 reservoir was injected in supercritical state into the reservoir. The carbon stable isotope value (δ(13)C) of injected CO2 was significantly different from background values. In order to observe the breakthrough of the isotope tracer continuously, the new instruments were connected to a stainless steel riser tube that was installed in an observation well. The laser instrument is based on tunable laser direct absorption in the mid-infrared. The instrument recorded a continuous 10 day carbon stable isotope data set with 30 min resolution directly on-site in a field-based laboratory container during a tracer experiment. To test the instruments performance and accuracy the monitoring campaign was accompanied by daily CO2 sampling for laboratory analyses with isotope ratio mass spectrometry (IRMS). The carbon stable isotope ratios measured by conventional IRMS technique and by the new mid-infrared laser spectrometer agree remarkably well within analytical precision. This proves the capability of the new mid-infrared direct absorption technique to measure high precision and accurate real-time stable isotope data directly in the field. The laser spectroscopy data revealed for the first time a prior to this experiment unknown, intensive dynamic with fast changing δ(13)C values. The arrival pattern of the tracer suggest that the observed fluctuations were probably caused by migration along separate and distinct preferential flow paths between injection well and observation well. The short-term variances as observed in this study might have been missed during previous works that applied laboratory-based IRMS analysis. The new technique could contribute to a better tracing of the migration of the underground CO2 plume and help to ensure the long-term integrity of the reservoir.


Assuntos
Dióxido de Carbono/química , Carbono/química , Isótopos/química , Lasers , Espectrofotometria Infravermelho/métodos
7.
Sci Total Environ ; 948: 174651, 2024 Jul 09.
Artigo em Inglês | MEDLINE | ID: mdl-38992376

RESUMO

The understanding of global carbon has rarely extended to small-scale tropical river basins. To address these uncertainties, this study aims to investigate the importance of rock weathering and organic matter turnover in the carbon cycle in a terrain dominated by crystalline silicate rocks. The geochemical composition of the dissolved and particulate carbon phases (DIC, DOC and POC) and their stable carbon isotopes were studied in the Deduru Oya River in Sri Lanka. Dissolved inorganic carbon (DIC) was the most dominant carbon phase and its contribution to the total carbon pool varied between 67 and 89 %. Furthermore, the δ13CDIC values in the river varied between -1.1 and -16.5 ‰. The lithological characteristics and molar ratios between Ca2+, Mg2+ and HCO3- indicated rock weathering mainly by CO2 and carbonic acid. The δ13CDIC values for groundwater input were -15.9 ‰, while for carbonate weathering, mainly due to fertiliser input, they reached a value of -12.7 ‰. This input was fed into an isotope mass balance to determine the relative contributions. However, the isotope mass balance was only plausible after correcting for the effects on δ13CDIC caused by degassing and photosynthesis. Our study demonstrated that carbonate weathering and organic matter turnover are essential components of the river carbon cycle even in a silicate dominated catchment. They can represent up to 60 % of the DIC pool. Combined with the higher organic matter turnover and high pCO2 in the river water, it can be suggested that the Deduru Oya River acts as a net source of CO2 in the atmosphere. Our study shows that CO2 degassing and in-stream photosynthesis in tropical river systems need to be considered along with chemical weathering to account for carbon transport and turnover in tropical rivers.

8.
Isotopes Environ Health Stud ; : 1-15, 2024 Jul 01.
Artigo em Inglês | MEDLINE | ID: mdl-38949394

RESUMO

Understanding the critical thresholds of dissolved oxygen (O2) that trigger adaptive physiological responses in aquatic organisms is long hampered by a lack of robust, non-lethal or non-invasive methodologies. The isotope fractionation of triple O2 isotopes (18O/17O/16O) during respiration is linked to the amount of oxygen utilised, offering a potential avenue for new insights. Our experimental research involved measuring the oxygen isotope fractionation of dissolved O2 in closed-system aquatic respirometry experiments with wild sticklebacks (Gasterosteus aculeatus). These fish were either naturally adapted or experimentally acclimated to hypoxic and normoxic conditions. The aim was to observe their oxygen usage and isotope fractionation in response to increasingly severe hypoxia. Initial observations revealed a progressive 18O enrichment from the preferential uptake of 16O to a dissolved oxygen threshold of 3-5 mg O2 L-1, followed by an apparent reversal in oxygen isotope fractionation, which is mixing of 16O and 17O with the remaining O2 pool across all populations and indicative of a systematic change in oxygen metabolism among the fish. Unexpectedly, sticklebacks adapted to hypoxia but acclimated to normoxia exhibited stronger oxygen isotope fractionation compared to those adapted to normoxia and acclimated to hypoxia, contradicting the hypothesis that hypoxia adaptation would lead to reduced isotope discrimination due to more efficient oxygen uptake. These preliminary experimental results highlight the novel potential of using dissolved O2 isotopes as a non-invasive, non-lethal method to quantitatively assess metabolic thresholds in aquatic organisms. This approach could significantly improve our understanding of the critical oxygen responses and adaptation mechanisms in fish and other aquatic organisms across different oxygen environments, marking a significant step forward in aquatic ecological and physiological research.

9.
Rapid Commun Mass Spectrom ; 27(18): 2099-107, 2013 Sep 30.
Artigo em Inglês | MEDLINE | ID: mdl-23943331

RESUMO

RATIONALE: Stable carbon isotope ratios of dissolved inorganic (DIC) and organic carbon (DOC) are of particular interest in aquatic geochemistry. The precision for this type of analysis is typically reported in the range of 0.1‰ to 0.5‰. However, there is no published attempt that compares δ(13)C measurements of DIC and DOC among different laboratories for natural water samples. METHODS: Five natural water samples (lake water, seawater, two geothermal waters, and petroleum well water) were analyzed for δ(13)CDIC and δ(13)CDOC values by five laboratories with isotope ratio mass spectrometry (IRMS) in an international proficiency test. RESULTS: The reported δ(13)CDIC values for lake water and seawater showed fairly good agreement within a range of about 1‰, whereas geothermal and petroleum waters were characterized by much larger differences (up to 6.6‰ between laboratories). δ(13)CDOC values were only comparable for seawater and showed differences of 10 to 21‰ for other samples. CONCLUSIONS: This study indicates that scatter in δ(13)CDIC isotope data can be in the range of several per mil for samples from extreme environments (geothermal waters) and may not yield reliable information with respect to dissolved carbon (petroleum wells). The analyses of lake water and seawater also revealed a larger than expected difference and researchers from various disciplines should be aware of this. Evaluation of analytical procedures of the participating laboratories indicated that the differences cannot be explained by analytical errors or different data normalization procedures and must be related to specific sample characteristics or secondary effects during sample storage and handling. Our results reveal the need for further research on sources of error and on method standardization.


Assuntos
Isótopos de Carbono/análise , Água Doce/química , Espectrometria de Massas/métodos , Compostos Orgânicos/análise , Água do Mar/química
10.
Kidney Int Rep ; 8(3): 642-657, 2023 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-36938087

RESUMO

Introduction: Although the investigation of chronic kidney disease of uncertain etiology (CKDu) has identified many possible influencing factors in recent years, the exact pathomechanism of this disease remains unclear. Methods: In this study, we collected 13 renal biopsies from patients with symptomatic CKDu (Sym-CKDu) from Sri Lanka with well-documented clinical and socioeconomic factors. We performed light microscopy and electron microscopic evaluation for ultrastructural analysis, which was compared with 100 biopsies from German patients with 20 different kidney diseases. Results: Of the 13 Sri Lankan patients, 12 were men (92.3%), frequently employed in agriculture (50%), and experienced symptoms such as feeling feverish (83.3%), dysuria (83.3%), and arthralgia (66.6%). Light microscopic evaluation using activity and chronicity score revealed that cases represented early stages of CKDu except for 2 biopsies, which showed additional signs of diabetes. Most glomeruli showed only mild changes, such as podocyte foot process effacement on electron microscopy. We found a spectrum of early tubulointerstitial changes including partial loss of brush border in proximal tubules, detachment of tubular cells, enlarged vacuoles, and mitochondrial swelling associated with loss of cristae and dysmorphic lysosomes with electron-dense aggregates. None of these changes occurred exclusively in Sym-CKDu; however, they were significantly more frequent in these cases than in the control cohort. Conclusion: In conclusion, our findings confirm the predominant and early alterations of tubular structure in CKDu that can occur without significant glomerular changes. The ultrastructural changes do not provide concrete evidence of the cause of CKDu but were significantly more frequent in Sym-CKDu than in the controls.

11.
Sci Total Environ ; 838(Pt 3): 156541, 2022 Sep 10.
Artigo em Inglês | MEDLINE | ID: mdl-35679920

RESUMO

Dissolved oxygen (DO) dynamics of a temperate drinking water reservoir in the Harz Mountains (Germany) were investigated over a time period of 18 months. Via depth profiles in a fortnightly sampling resolution we were able to trace DO and temperature dynamics including the formation and breakdown of a Metalimnetic Oxygen Minimum (MOM) by means of DO concentration, saturation patterns and stable isotope ratios of dissolved oxygen (expressed as δ18ODO). Over the evaluation period, 19.4 % of the samples collected had δ18ODO values compatible with atmospheric equilibration (+24.6 ‰ ± 0.4 ‰). With values smaller and larger than this threshold, the remaining δ18ODO values showed that 40.8 % of our samples were dominated by photosynthesis and 39.8 % by respiration. From December to April the reservoir was mixed and DO consumption by respiration exceeded production via photosynthesis. During stratification period, quantification of respiration/photosynthesis rates (R/P) confirmed the epilimnion as a photosynthetic (i.e. net-autotrophic) environment while the hypolimnion was heterotrophic and dominated by respiration at various degrees. Samples of the MOM zone showed the highest R/P ratios and had among the most positive δ18ODO signals caused by respiration. This study showed that combinations of DO concentrations and their isotope ratios are promising to quantify critical zones of respiration and photosynthesis in aquatic environments.


Assuntos
Água Potável , Oxigênio , Isótopos de Carbono/análise , Isótopos , Oxigênio/análise , Consumo de Oxigênio , Isótopos de Oxigênio/análise , Temperatura
12.
Sci Rep ; 12(1): 10204, 2022 06 17.
Artigo em Inglês | MEDLINE | ID: mdl-35715436

RESUMO

Dissolved oxygen (DO) is crucial for aerobic life in streams and rivers and mostly depends on photosynthesis (P), ecosystem respiration (R) and atmospheric gas exchange (G). However, climate and land use changes progressively disrupt metabolic balances in natural streams as sensitive reflectors of their catchments. Comprehensive methods for mapping fundamental ecosystem services become increasingly important in a rapidly changing environment. In this work we tested DO and its stable isotope (18O/16O) ratios as novel tools for the status of stream ecosystems. For this purpose, six diel sampling campaigns were performed at three low-order and mid-latitude European streams with different land use patterns. Modelling of diel DO and its stable isotopes combined with land use analyses showed lowest P rates at forested sites, with a minimum of 17.9 mg m-2 h-1. Due to high R rates between 230 and 341 mg m-2 h-1 five out of six study sites showed a general heterotrophic state with P:R:G ratios between 0.1:1.1:1 and 1:1.9:1. Only one site with agricultural and urban influences showed a high P rate of 417 mg m-2 h-1 with a P:R:G ratio of 1.9:1.5:1. Between all sites gross G rates varied between 148 and 298 mg m-2 h-1. In general, metabolic rates depend on the distance of sampling locations to river sources, light availability, nutrient concentrations and possible exchanges with groundwater. The presented modelling approach introduces a new and powerful tool to study effects of land use on stream health. Such approaches should be integrated into future ecological monitoring.


Assuntos
Ecossistema , Rios , Agricultura , Oxigênio/análise , Isótopos de Oxigênio/análise
13.
Biol Trace Elem Res ; 200(2): 526-534, 2022 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-33821417

RESUMO

Fluoride is a beneficial trace element for human health as its deficiency and excess levels can cause detrimental health effects. In Sri Lanka, dry zone regions can have excessive levels of fluoride in drinking water and can cause dental and skeletal fluorosis. In addition to drinking water, traditional habits of tea consumption can cause an additional intake of fluoride in the population. A total number of 39 locally blended black tea samples were collected from a village where chronic kidney disease with undetermined origin (CKDu) is prevalent. In addition, unblended tea samples were obtained from tea-producing factories. The fluoride contents in infusions of 2% weight per volume (w/v) were measured using calibrated ion-selective fluoride electrodes. The mean fluoride content was 2.68±1.03 mg/L in loose tea, 1.87±0.57mg/L in packed tea samples, and 1.14±0.55 mg/L in unblended tea. Repeated brewing of the same tea leaves showed that over 50% of fluoride leached into the solution in the first infusion. An estimate of the daily total average fluoride intake via tea consumption per person is 2.68 mg per day. With groundwater in many dry zone regions in Sri Lanka showing high fluoride levels that exceed 0.5 mg/L, the additional daily intake can rapidly exceed recommended thresholds of 2 mg/day. This can add to adverse health impacts that might also relate to CKDu.


Assuntos
Camellia sinensis , Insuficiência Renal Crônica , Fluoretos/análise , Humanos , Incidência , Insuficiência Renal Crônica/induzido quimicamente , Insuficiência Renal Crônica/epidemiologia , Sri Lanka/epidemiologia , Chá
14.
Sci Total Environ ; 807(Pt 3): 151067, 2022 Feb 10.
Artigo em Inglês | MEDLINE | ID: mdl-34673071

RESUMO

Next to water quality deterioration, cyanobacteria blooms can affect turnover of aqueous carbon, including dissolved inorganic carbon (DIC), dissolved organic carbon (DOC), and particulate organic carbon (POC). We investigated interactions of these three phases and their stable isotopes in a freshwater pond with periodic cyanobacterial blooms over a period of 23 months. This helped to map turnover and sources of aqueous carbon before, during, and after bloom events. During bloom events POC isotope values (δ13CPOC) increased up to -17.4‰, after aqueous CO2 (CO2(aq)) fell below an atmospheric equilibration value of 412 µatm. Additionally, carbon isotope enrichment between CO2(aq) and POC (εCO2-phyto) ranged from 2.0 to 21.5‰ with lowest fractionations observed at pH values above 8.9. The increase of δ13CPOC and decrease of εCO2-phyto values at low pCO2 and high pH was most likely caused by the activation of the carbon concentrating mechanism (CCM). This mechanism correlated with prevalent assimilation of 13C-enriched HCO3-. Surprisingly, CO2(aq) still contributed more than 50% to the POC pool down to pCO2 values of around 150 µatm. Only after this threshold the reduced εCO2-phyto suggested incorporation of 13C-enriched HCO3-.


Assuntos
Bicarbonatos , Cianobactérias , Carbono , Matéria Orgânica Dissolvida , Isótopos
15.
Sci Total Environ ; 778: 146099, 2021 Jul 15.
Artigo em Inglês | MEDLINE | ID: mdl-33714833

RESUMO

Rivers are significant sources of CO2 to the atmosphere, and karstic watersheds are particularly important in this respect due to their large availability of inorganic carbon. This study examines characteristics of dissolved inorganic carbon (DIC) and excess partial pressures of CO2 (epCO2) in the source springs and headwaters of four watersheds in a Central European karstic region, via dissolved inorganic carbon concentration and stable carbon isotope measurements. Our results show the most 13C-depleted δ13CDIC values at the source springs, which become rapidly enriched downstream due to CO2 degassing. Concurrently, epCO2 values, while consistently in excess of atmospheric concentrations at the spring sources, show decreases of up to 92% within only 50 m downstream distance. In conjunction with the large observed flux estimates of up to 88 g C m-2 day-1, these findings suggest that karstic springs are major CO2 sources to the atmosphere. Because headwater streams constitute the bulk of the surface area of most watersheds, they may provide a disproportionately large contribution to CO2 effluxes in carbonate-dominated basins, in which source springs play a particularly important role.

16.
Environ Sci Pollut Res Int ; 27(18): 23002-23014, 2020 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-32328998

RESUMO

Water supplies in coastal aquifers throughout the world are often threatened by salinization due to seawater intrusion and anthropogenic activities. In the Kalpitiya Peninsula in Sri Lanka, agricultural and domestic water supplies entirely depend on groundwater resources extracted from unconfined Holocene sandy aquifers. To differentiate the effects of seawater intrusion and agriculture on the coastal aquifers of this 160 km2 peninsula, 43 groundwater samples were collected. These samples were analyzed for major ions, trace elements, and stable isotopes of water (δ18O and δ2H). The solute compositions were dominated by Cl-, [Formula: see text], and [Formula: see text], which were mostly balanced by Ca2+, Na+, and Mg2+. Among the four main water types, Na+-Cl- and Ca2+-[Formula: see text] classifications were predominant in the investigated aquifers. Modifications of the groundwater due to evaporation during irrigation activities, but also due to seawater intrusion seem most plausible as indicated by the correlation of δ18O with δ2H (δ2H = 5.51 * Î´18O-3.08, r = 0.93) deviating from the local meteoric water line. Particularly in the southern part of the peninsula, Mg2+/Ca2+ ratios and stable isotopes of water attributed salinization of groundwater to agricultural activities. However, especially in the north, seawater intrusions were also evident. Established mass balance calculations revealed that local groundwater had seawater admixtures of up to 12%. Our results indicate that integrated water management is essential and water resources should critically monitor in the Kalpitiya Peninsula in order to avoid over-exploitation and further seawater inflows.


Assuntos
Água Subterrânea , Poluentes Químicos da Água/análise , Monitoramento Ambiental , Isótopos , Salinidade , Água do Mar , Sri Lanka
17.
Sci Rep ; 10(1): 20671, 2020 11 26.
Artigo em Inglês | MEDLINE | ID: mdl-33244124

RESUMO

The relevance of CO2 emissions from geological sources to the atmospheric carbon budget is becoming increasingly recognized. Although geogenic gas migration along faults and in volcanic zones is generally well studied, short-term dynamics of diffusive geogenic CO2 emissions are mostly unknown. While geogenic CO2 is considered a challenging threat for underground mining operations, mines provide an extraordinary opportunity to observe geogenic degassing and dynamics close to its source. Stable carbon isotope monitoring of CO2 allows partitioning geogenic from anthropogenic contributions. High temporal-resolution enables the recognition of temporal and interdependent dynamics, easily missed by discrete sampling. Here, data is presented from an active underground salt mine in central Germany, collected on-site utilizing a field-deployed laser isotope spectrometer. Throughout the 34-day measurement period, total CO2 concentrations varied between 805 ppmV (5th percentile) and 1370 ppmV (95th percentile). With a 400-ppm atmospheric background concentration, an isotope mixing model allows the separation of geogenic (16-27%) from highly dynamic anthropogenic combustion-related contributions (21-54%). The geogenic fraction is inversely correlated to established CO2 concentrations that were driven by anthropogenic CO2 emissions within the mine. The described approach is applicable to other environments, including different types of underground mines, natural caves, and soils.

18.
Sci Rep ; 10(1): 13187, 2020 08 06.
Artigo em Inglês | MEDLINE | ID: mdl-32764641

RESUMO

Sources of particulate organic carbon (POC) play important roles in aqueous carbon cycling because internal production can provide labile material that can easily be turned into CO2. On the other hand, more recalcitrant external POC inputs can cause increased loads to sedimentary organic matter that may ultimately cause CH4 release. In order to differentiate sources, stable isotopes offer a useful tool. We present a study on the Itupararanga Reservoir (Brazil) where origins of POC were explored by comparing its isotope ratios (δ13CPOC) to those of dissolved inorganic carbon (δ13CDIC). The δ13CPOC averaged around - 25.1‰ in near-surface waters, which indicates higher primary production inferred from a fractionation model that takes into account carbon transfer with a combined evaluation of δ13CPOC, δ13CDIC and aqueous CO2. However, δ13CPOC values for water depths from 3 to 15 m decreased to - 35.6‰ and indicated different carbon sources. Accordingly, the δ13CDIC values of the reservoir averaged around + 0.6‰ in the top 3 m of the water column. This indicates CO2 degassing and photosynthesis. Below this depth, DIC isotope values of as low as - 10.1‰ showed stronger influences of respiration. A fractionation model with both isotope parameters revealed that 24% of the POC in the reservoir originated from detritus outside the reservoir and 76% of it was produced internally by aqueous CO2 fixation.

19.
Nat Commun ; 9(1): 4565, 2018 11 01.
Artigo em Inglês | MEDLINE | ID: mdl-30385759

RESUMO

Understanding the mechanism of water oxidation to dioxygen represents the bottleneck towards the design of efficient energy storage schemes based on water splitting. The investigation of kinetic isotope effects has long been established for mechanistic studies of various such reactions. However, so far natural isotope abundance determination of O2 produced at solid electrode surfaces has not been applied. Here, we demonstrate that such measurements are possible. Moreover, they are experimentally simple and sufficiently accurate to observe significant effects. Our measured kinetic isotope effects depend strongly on the electrode material and on the applied electrode potential. They suggest that in the case of iron oxide as the electrode material, the oxygen evolution reaction occurs via a rate-determining O-O bond formation via nucleophilic water attack on a ferryl unit.

20.
Sci Total Environ ; 633: 1352-1359, 2018 Aug 15.
Artigo em Inglês | MEDLINE | ID: mdl-29758887

RESUMO

Major ion, trace elements, and stable isotope analyses were performed on groundwater samples collected from Mannar Island in the northern Indian Ocean. Arsenic concentrations up to 34µg/L have been observed in groundwater samples from the island. In addition, 23% of extensively used shallow drinking water wells showed higher arsenic contents than the recommended value by the World Health Organization (10µg/L). Groundwater in the island showed pH values between 6.9 and 8.9 and was dominated by Na+, K+, Ca2+, Mg2+, HCO3-, Cl- and SO42-. The δ18OH2O and δ2HH2O composition of most groundwater plotted very close to the local meteoric waterline, however, some wells showed enriched isotope compositions that are most likely due to evaporation. Sea water intrusion in this island was likely of minor importance as indicated by the major ion composition. An approximated mass balance calculation using chloride concentrations indicated that out of the 35 investigated wells only 6 near-shore wells were influenced by sea water intrusion up to about 15%. Even though this is a sandy aquifer, groundwaters were characterized with higher contents of dissolved inorganic carbon (DIC) (2.11-10.9mmol/L). The corresponding δ13CDIC values varied from -19.4‰ to -6.5‰. Except for a few samples with values approaching -20‰, these isotope values are more typical for carbonate dissolution and equilibration of CO2 in the aquifer. This study shows that the underlying carbonate system may buffer the aqueous geochemistry of the groundwater on the island. The high arsenic content in groundwater may have been mobilized through reductive dissolution of Fe-Mn oxides and oxy-hydroxides that are coated on sandy aquifer materials. The lower content of DOC (0.2-1.5mmol/L) provides evidence for the restricted formation of pyrite in the aquifer.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA