RESUMO
We demonstrate that x-ray fluorescence emission, which cannot maintain a stationary interference pattern, can be used to obtain images of structures by recording photon-photon correlations in the manner of the stellar intensity interferometry of Hanbury Brown and Twiss. This is achieved utilizing femtosecond-duration pulses of a hard x-ray free-electron laser to generate the emission in exposures comparable to the coherence time of the fluorescence. Iterative phasing of the photon correlation map generated a model-free real-space image of the structure of the emitters. Since fluorescence can dominate coherent scattering, this may enable imaging uncrystallised macromolecules.
RESUMO
The success of diffraction experiments from weakly scattering samples strongly depends on achieving an optimal signal-to-noise ratio. This is particularly important in single-particle imaging experiments where diffraction signals are typically very weak and the experiments are often accompanied by significant background scattering. A simple way to tremendously reduce background scattering by placing an aperture downstream of the sample has been developed and its application in a single-particle X-ray imaging experiment at FLASH is demonstrated. Using the concept of a post-sample aperture it was possible to reduce the background scattering levels by two orders of magnitude.
RESUMO
X-ray crystallography provides the vast majority of macromolecular structures, but the success of the method relies on growing crystals of sufficient size. In conventional measurements, the necessary increase in X-ray dose to record data from crystals that are too small leads to extensive damage before a diffraction signal can be recorded. It is particularly challenging to obtain large, well-diffracting crystals of membrane proteins, for which fewer than 300 unique structures have been determined despite their importance in all living cells. Here we present a method for structure determination where single-crystal X-ray diffraction 'snapshots' are collected from a fully hydrated stream of nanocrystals using femtosecond pulses from a hard-X-ray free-electron laser, the Linac Coherent Light Source. We prove this concept with nanocrystals of photosystem I, one of the largest membrane protein complexes. More than 3,000,000 diffraction patterns were collected in this study, and a three-dimensional data set was assembled from individual photosystem I nanocrystals (â¼200 nm to 2 µm in size). We mitigate the problem of radiation damage in crystallography by using pulses briefer than the timescale of most damage processes. This offers a new approach to structure determination of macromolecules that do not yield crystals of sufficient size for studies using conventional radiation sources or are particularly sensitive to radiation damage.
Assuntos
Cristalografia por Raios X/métodos , Nanopartículas/química , Nanotecnologia/métodos , Complexo de Proteína do Fotossistema I/química , Cristalografia por Raios X/instrumentação , Lasers , Modelos Moleculares , Nanotecnologia/instrumentação , Conformação Proteica , Fatores de Tempo , Raios XRESUMO
X-ray lasers offer new capabilities in understanding the structure of biological systems, complex materials and matter under extreme conditions. Very short and extremely bright, coherent X-ray pulses can be used to outrun key damage processes and obtain a single diffraction pattern from a large macromolecule, a virus or a cell before the sample explodes and turns into plasma. The continuous diffraction pattern of non-crystalline objects permits oversampling and direct phase retrieval. Here we show that high-quality diffraction data can be obtained with a single X-ray pulse from a non-crystalline biological sample, a single mimivirus particle, which was injected into the pulsed beam of a hard-X-ray free-electron laser, the Linac Coherent Light Source. Calculations indicate that the energy deposited into the virus by the pulse heated the particle to over 100,000 K after the pulse had left the sample. The reconstructed exit wavefront (image) yielded 32-nm full-period resolution in a single exposure and showed no measurable damage. The reconstruction indicates inhomogeneous arrangement of dense material inside the virion. We expect that significantly higher resolutions will be achieved in such experiments with shorter and brighter photon pulses focused to a smaller area. The resolution in such experiments can be further extended for samples available in multiple identical copies.
Assuntos
Mimiviridae/química , Difração de Raios X/instrumentação , Difração de Raios X/métodos , Elétrons , Temperatura Alta , Lasers , Fótons , Fatores de Tempo , Raios XRESUMO
X-ray free electron laser (X-FEL)-based serial femtosecond crystallography is an emerging method with potential to rapidly advance the challenging field of membrane protein structural biology. Here we recorded interpretable diffraction data from micrometer-sized lipidic sponge phase crystals of the Blastochloris viridis photosynthetic reaction center delivered into an X-FEL beam using a sponge phase micro-jet.
Assuntos
Cristalografia por Raios X/métodos , Bicamadas Lipídicas/química , Proteínas de Membrana/química , Proteínas de Membrana/ultraestrutura , Ligação Proteica , Conformação Proteica/efeitos da radiação , Raios XRESUMO
Protein crystallization in cells has been observed several times in nature. However, owing to their small size these crystals have not yet been used for X-ray crystallographic analysis. We prepared nano-sized in vivo-grown crystals of Trypanosoma brucei enzymes and applied the emerging method of free-electron laser-based serial femtosecond crystallography to record interpretable diffraction data. This combined approach will open new opportunities in structural systems biology.
Assuntos
Cristalografia por Raios X/métodos , Cristalografia/métodos , Proteínas/química , Proteínas/ultraestrutura , Ligação Proteica/efeitos da radiação , Conformação Proteica/efeitos da radiação , Proteínas/efeitos da radiação , Solubilidade/efeitos da radiação , Raios XRESUMO
Knowledge of the sequence of different conformational states of a protein molecule is key to better understanding its biological function. A diffraction pattern from a single conformational state can be captured with an ultrafast X-ray Free-Electron Laser (XFEL) before the target is completely annihilated by the radiation. In this paper, we report the first experimental demonstration of conformation sequence recovery using diffraction patterns from randomly ordered conformations of a non-periodic object using the dimensional reduction technique Isomap and coherent diffraction imaging.
RESUMO
We use a Mach-Zehnder type autocorrelator to split and delay XUV pulses from the FLASH soft X-ray laser for triggering and subsequently probing the explosion of aerosolised sugar balls. FLASH was running at 182 eV photon energy with pulses of 70 fs duration. The delay between the pump-probe pulses was varied between zero and 5 ps, and the pulses were focused to reach peak intensities above 10¹6W/cm² with an off-axis parabola. The direct pulse triggered the explosion of single aerosolised sucrose nano-particles, while the delayed pulse probed the exploding structure. The ejected ions were measured by ion time of flight spectrometry, and the particle sizes were measured by coherent diffractive imaging. The results show that sucrose particles of 560-1000 nm diameter retain their size for about 500 fs following the first exposure. Significant sample expansion happens between 500 fs and 1 ps. We present simulations to support these observations.
Assuntos
Elétrons , Imageamento Tridimensional/métodos , Lasers , Nanosferas/química , Análise Espectral/métodos , Sacarose/química , Simulação por Computador , Hidrogênio/química , Íons , Termodinâmica , Raios XRESUMO
Single shot diffraction imaging experiments via X-ray free-electron lasers can generate as many as hundreds of thousands of diffraction patterns of scattering objects. Recovering the real space contrast of a scattering object from these patterns currently requires a reconstruction process with user guidance in a number of steps, introducing severe bottlenecks in data processing. We present a series of measures that replace user guidance with algorithms that reconstruct contrasts in an unsupervised fashion. We demonstrate the feasibility of automating the reconstruction process by generating hundreds of contrasts obtained from soot particle diffraction experiments.
RESUMO
Characterizing intense, focused x-ray free electron laser (FEL) pulses is crucial for their use in diffractive imaging. We describe how the distribution of average phase tilts and intensities on hard x-ray pulses with peak intensities of 10(21) W/m(2) can be retrieved from an ensemble of diffraction patterns produced by 70 nm-radius polystyrene spheres, in a manner that mimics wavefront sensors. Besides showing that an adaptive geometric correction may be necessary for diffraction data from randomly injected sample sources, our paper demonstrates the possibility of collecting statistics on structured pulses using only the diffraction patterns they generate and highlights the imperative to study its impact on single-particle diffractive imaging.
Assuntos
Aerossóis/análise , Aerossóis/química , Lasers , Fotometria/métodos , Refratometria/métodos , Ressonância de Plasmônio de Superfície/métodos , Raios X , Elétrons , Desenho de Equipamento , Análise de Falha de Equipamento , MicroesferasRESUMO
We describe femtosecond X-ray diffraction data sets of viruses and nanoparticles collected at the Linac Coherent Light Source. The data establish the first large benchmark data sets for coherent diffraction methods freely available to the public, to bolster the development of algorithms that are essential for developing this novel approach as a useful imaging technique. Applications are 2D reconstructions, orientation classification and finally 3D imaging by assembling 2D patterns into a 3D diffraction volume.
RESUMO
We demonstrate the use of an X-ray free electron laser synchronized with an optical pump laser to obtain X-ray diffraction snapshots from the photoactivated states of large membrane protein complexes in the form of nanocrystals flowing in a liquid jet. Light-induced changes of Photosystem I-Ferredoxin co-crystals were observed at time delays of 5 to 10 µs after excitation. The result correlates with the microsecond kinetics of electron transfer from Photosystem I to ferredoxin. The undocking process that follows the electron transfer leads to large rearrangements in the crystals that will terminally lead to the disintegration of the crystals. We describe the experimental setup and obtain the first time-resolved femtosecond serial X-ray crystallography results from an irreversible photo-chemical reaction at the Linac Coherent Light Source. This technique opens the door to time-resolved structural studies of reaction dynamics in biological systems.
Assuntos
Cristalografia por Raios X/métodos , Ferredoxinas/ultraestrutura , Lasers , Nanoestruturas/ultraestrutura , Difração de Raios X/métodos , Elétrons , Conformação Proteica , Raios XRESUMO
Single-particle experiments using X-ray Free Electron Lasers produce more than 10(5) snapshots per hour, consisting of an admixture of blank shots (no particle intercepted), and exposures of one or more particles. Experimental data sets also often contain unintentional contamination with different species. We present an unsupervised method able to sort experimental snapshots without recourse to templates, specific noise models, or user-directed learning. The results show 90% agreement with manual classification.
RESUMO
Wavelength, reflectance, and stress stability of Mo/B(4)C multilayers were studied as a function of postdeposition annealing up to 900 °C. These multilayers are of interest as normal incidence coatings for wavelengths above the boron K-absorption edge. Mo/B(4)C multilayers deposited at low sputtering pressure have high compressive stress. Zero stress can be achieved at 360 °C-370 °C, but annealing at <200 °C is sufficient to reduce stress by â¼40%. This stress relaxation is accompanied with a multilayer period expansion of â¼0.02 nm and a <0.5% decrease in normal incidence reflectivity. The multilayer period remains stable up to â¼600 °C, while intrinsic stress changes from compressive to tensile. A four-layer model with amorphous molybdenum and boron carbide layers separated by amorphous layers of molybdenum borides (Mo(x)B(y)) is presented. These interlayers are present already in the as-deposited state and continue to grow with increasing temperature. Their presence lowers the optical contrast and the achievable reflectivity. However, they also increase multilayer thermal stability. At temperatures >600 °C, a noticeable decrease in reflectivity associated with the phase transition from amorphous to crystalline molybdenum boride is observed. This is accompanied with an increase in interface and surface roughness and a change in stress as a function of temperature.
RESUMO
The crystallization of recombinant proteins in living cells is an exciting new approach in structural biology. Recent success has highlighted the need for fast and efficient diffraction data collection, optimally directly exposing intact crystal-containing cells to the X-ray beam, thus protecting the in cellulo crystals from environmental challenges. Serial femtosecond crystallography (SFX) at free-electron lasers (XFELs) allows the collection of detectable diffraction even from tiny protein crystals, but requires very fast sample exchange to utilize each XFEL pulse. Here, an efficient approach is presented for high-resolution structure elucidation using serial femtosecond in cellulo diffraction of micometre-sized crystals of the protein HEX-1 from the fungus Neurospora crassa on a fixed target. Employing the fast and highly accurate Roadrunner II translation-stage system allowed efficient raster scanning of the pores of micro-patterned, single-crystalline silicon chips loaded with living, crystal-containing insect cells. Compared with liquid-jet and LCP injection systems, the increased hit rates of up to 30% and reduced background scattering enabled elucidation of the HEX-1 structure. Using diffraction data from only a single chip collected within 12â min at the Linac Coherent Light Source, a 1.8â Å resolution structure was obtained with significantly reduced sample consumption compared with previous SFX experiments using liquid-jet injection. This HEX-1 structure is almost superimposable with that previously determined using synchrotron radiation from single HEX-1 crystals grown by sitting-drop vapour diffusion, validating the approach. This study demonstrates that fixed-target SFX using micro-patterned silicon chips is ideally suited for efficient in cellulo diffraction data collection using living, crystal-containing cells, and offers huge potential for the straightforward structure elucidation of proteins that form intracellular crystals at both XFELs and synchrotron sources.
RESUMO
The coronavirus disease (COVID-19) caused by SARS-CoV-2 is creating tremendous human suffering. To date, no effective drug is available to directly treat the disease. In a search for a drug against COVID-19, we have performed a high-throughput x-ray crystallographic screen of two repurposing drug libraries against the SARS-CoV-2 main protease (Mpro), which is essential for viral replication. In contrast to commonly applied x-ray fragment screening experiments with molecules of low complexity, our screen tested already-approved drugs and drugs in clinical trials. From the three-dimensional protein structures, we identified 37 compounds that bind to Mpro In subsequent cell-based viral reduction assays, one peptidomimetic and six nonpeptidic compounds showed antiviral activity at nontoxic concentrations. We identified two allosteric binding sites representing attractive targets for drug development against SARS-CoV-2.
Assuntos
Sítio Alostérico , Antivirais/química , Domínio Catalítico , Proteases 3C de Coronavírus/antagonistas & inibidores , Proteases 3C de Coronavírus/química , Desenvolvimento de Medicamentos , Inibidores de Proteases/química , SARS-CoV-2/enzimologia , Animais , Antivirais/farmacologia , Chlorocebus aethiops , Cristalografia por Raios X , Avaliação Pré-Clínica de Medicamentos , Inibidores de Proteases/farmacologia , SARS-CoV-2/efeitos dos fármacos , Células Vero , Replicação Viral/efeitos dos fármacosRESUMO
Studies of biological systems typically require the application of several complementary methods able to yield statistically-relevant results at a unique level of sensitivity. Combined X-ray fluorescence and ptychography offer excellent elemental and structural imaging contrasts at the nanoscale. They enable a robust correlation of elemental distributions with respect to the cellular morphology. Here we extend the applicability of the two modalities to higher X-ray excitation energies, permitting iron mapping. Using a long-range scanning setup, we applied the method to two vital biomedical cases. We quantified the iron distributions in a population of macrophages treated with Mycobacterium-tuberculosis-targeting iron-oxide nanocontainers. Our work allowed to visualize the internalization of the nanocontainer agglomerates in the cytosol. From the iron areal mass maps, we obtained a distribution of antibiotic load per agglomerate and an average areal concentration of nanocontainers in the agglomerates. In the second application we mapped the calcium content in a human bone matrix in close proximity to osteocyte lacunae (perilacunar matrix). A concurrently acquired ptychographic image was used to remove the mass-thickness effect from the raw calcium map. The resulting ptychography-enhanced calcium distribution allowed then to observe a locally lower degree of mineralization of the perilacunar matrix.
Assuntos
Matriz Óssea/diagnóstico por imagem , Remodelação Óssea/fisiologia , Cálcio/metabolismo , Macrófagos/metabolismo , Imagem Multimodal/métodos , Animais , Matriz Óssea/metabolismo , Camundongos , Raios XRESUMO
Efficient and reliable sample delivery has remained one of the bottlenecks for serial crystallography experiments. Compared with other methods, fixed-target sample delivery offers the advantage of significantly reduced sample consumption and shorter data collection times owing to higher hit rates. Here, a new method of on-chip crystallization is reported which allows the efficient and reproducible growth of large numbers of protein crystals directly on micro-patterned silicon chips for in-situ serial crystallography experiments. Crystals are grown by sitting-drop vapor diffusion and previously established crystallization conditions can be directly applied. By reducing the number of crystal-handling steps, the method is particularly well suited for sensitive crystal systems. Excessive mother liquor can be efficiently removed from the crystals by blotting, and no sealing of the fixed-target sample holders is required to prevent the crystals from dehydrating. As a consequence, 'naked' crystals are obtained on the chip, resulting in very low background scattering levels and making the crystals highly accessible for external manipulation such as the application of ligand solutions. Serial diffraction experiments carried out at cryogenic temperatures at a synchrotron and at room temperature at an X-ray free-electron laser yielded high-quality X-ray structures of the human membrane protein aquaporin 2 and two new ligand-bound structures of thermolysin and the human kinase DRAK2. The results highlight the applicability of the method for future high-throughput on-chip screening of pharmaceutical compounds.
RESUMO
Here we present a new approach to diffraction imaging of amyloid fibrils, combining a free-standing graphene support and single nanofocused X-ray pulses of femtosecond duration from an X-ray free-electron laser. Due to the very low background scattering from the graphene support and mutual alignment of filaments, diffraction from tobacco mosaic virus (TMV) filaments and amyloid protofibrils is obtained to 2.7 Å and 2.4 Å resolution in single diffraction patterns, respectively. Some TMV diffraction patterns exhibit asymmetry that indicates the presence of a limited number of axial rotations in the XFEL focus. Signal-to-noise levels from individual diffraction patterns are enhanced using computational alignment and merging, giving patterns that are superior to those obtainable from synchrotron radiation sources. We anticipate that our approach will be a starting point for further investigations into unsolved structures of filaments and other weakly scattering objects.
Assuntos
Amiloide/química , Grafite/química , Difração de Raios X/métodos , Humanos , Cinética , Difração de Raios X/instrumentaçãoRESUMO
Serial diffraction data collected at the Linac Coherent Light Source from crystalline amyloid fibrils delivered in a liquid jet show that the fibrils are well oriented in the jet. At low fibril concentrations, diffraction patterns are recorded from single fibrils; these patterns are weak and contain only a few reflections. Methods are developed for determining the orientation of patterns in reciprocal space and merging them in three dimensions. This allows the individual structure amplitudes to be calculated, thus overcoming the limitations of orientation and cylindrical averaging in conventional fibre diffraction analysis. The advantages of this technique should allow structural studies of fibrous systems in biology that are inaccessible using existing techniques.